
ML and AI for Robotics - Assignment:2

Senthil Palanisamy

October 28, 2019

A.1, A.2: Implementation of Astar Algorithm

The heuristic function that was used for the offline version of the algorithm is given below

h̄(n) = min(Xdiff , Ydiff)+ | Xdiff − Ydiff |

Xdiff is the absolute difference between the x coordinates of node and the goal. Xdiff =| xn − xg |,
where xn and xg refer to the x coordinates of the node n and goal respectively
Ydiff is the absolute difference between the y coordinates of node and the goal. Ydiff =| yn − yg | where
yn and yg refer to the y coordinates of the node n and goal respectively
Before presenting the proof of admissibility for this cost function, a short intuition behind the formulation
of this cost function is presented. Heuristic functions can derived by relaxing some of the actual constraints
in the problem and finding an expression for the cost of the goal from a node in this relaxed setting. To
come up with such a relaxed setting, lets assume that our grid would has no obstacles. In such a scenario,
the term min(Xdiff , Ydiff)+ | Xdiff − Ydiff | represents the actual cost of reaching the goal from a given
node. This can be understood by considering the figure below

Figure 1: A simple grid world with no obstacles

In accordance with the problem definition of equal costs for the 8-connected neighbors, the cheapest
cost from start point (1,1) to the goal point (3,4) is 3. It can be inferred that in finding the cheapest
path, we try to maximize the number of diagonal connections and then traverse vertically or horizontally
to reach the remaining distance. The term min(Xdiff , Ydiff) represents the maximum number of diagonal
entries that can be traversed between the current node and goal node while the term | Xdiff − Ydiff |
represents the remaining distance to be traveled after traversing all diagonal connections. Thus the function
h̄(n) = min(Xdiff , Ydiff)+ | Xdiff − Ydiff | represents the cost of the path to the goal from a given node
in a hypothetical no obstacle world. It is easy to prove that this heuristic is admissible id we look at the
following inequality

h̄(n) = C̄(n) <= C(n)

where C̄(n) is the cost of the path to the goal from the node when there are no obstacles and C(n)
represents the true cost. This inequality follows from the basic logic that placing an obstacles in the
middle of a cheapest cost path can at best leave the cost unaltered or increase its overall cost. This is

1

purely due to the optimal substructure property of the cheapest path i.e., if a subpath lies on the cheapest
path, then the subpath is by itself the cheapest path between those two nodes.

=⇒ h̄(n) <= C(n)

Therefore, this heuristic is admissible. It is worth noting that the efficiency of any heuristic lies in how
closely it lies to the true cost. In accordance with this fact, it can be seen that

SLD(n) <= h̄(n) <= C(n)

Chebyshev(n) <= h̄(n) <= C(n)

It can be verified that the cost returned by this heuristic is always higher than other commonly used
heuristics like Short Line Distance (SLD) and Chebyshev distance. Since this heuristic has higher cost than
other commonly used heuristic function, it should be more efficient and should lead to faster path finding
than the other heuristics presented above. It can also be emphasized that unless some prior knowledge on
obstacles is assumed, there cannot be a better heuristic for offline path planning than the one presented
here since this heuristic function equals the cost of the path to the goal from a node in an obstacle free
world.

The A star algorithm uses the heuristic along with the node transition cost to evaluate the cost of each
neighboring node. All the neighboring nodes of the current node are added to the open list and the node
that the robot has currently visited is added to the closed list. In each step of the algorithm, the cheapest
node from the open list is picked up and all its neighbors are added to the open list, after ensuring that
those neighbors have not been added to the closed list. The termination point of the algorithm is when
the goal node is added to the closed list. This A star algorithm is both complete and optimal because it
will always find a path to the goal (if it exists) and it finds the cheapest path that is available.

A.3: Results of applying A Star on graph

Figure 2: A Star results

It can be seen that the algorithm finds the most optimal path. One implication of the cost function that
we have introduced is that the algorithm always prefers the diagonal paths more than vertical or horizontal
paths since the heurisitic value associated with some diagonal paths is lower than vertical or horizontal
paths. One of the core requirements that make this possible is that we have the view of the whole graph
before hand and that the graph is static and does not change with time. Therefore, we can find the best
path before making any physical movement with the robot and then follow the path blindly. One of the
majors downsides of using AStar is the time and space complexity of the algorithm. The time and space
complexity of plain AStar is O(bd), where b is average branching factor and d is the depth of the tree.
The depth of the tree is dependent on the actual distance between the start node and end node, whereas

2

the branching factor is determined by the nature of the problem constraints and huerisitic chosen. This
exponential complexity of Astar makes it impractical for real time application. To explain the nature of
how unrealistic the time bound jumps up, experiments were run using different step sizes. From the table
we can see that step sizes below 0.5 can be unrealistic for real time computation.

Table 1: AStar timing analysis

S.No Step Size Time taken
m s

1 1 0.02
2 0.75 0.05
3 0.5 0.07
4 0.25 0.98
5 0.1 44

A.4,5: Online AStar and its results

The modification that has to made to make plain A star algorithm online were as follows
1. Open list was modified so as to include only immediate neighbors and not all neighbors of every node
visited, thereby completely eliminating backtracking.
2. There was an interesting problem with the heuristic, which was rectified through a slight modification
Point 1 is a direct consequence of the fact that backtracking is expensive in case of online algorithms
since the robot has to physically move to the previous location and continue from there on. Due to this,
the optimality and completeness property of AStar is destroyed but we make this conscious trade off to
meet the real time requirements. Its easy to see how optimality is destroyed but to understand why the
algorithm becomes incomplete,lets consider the example shown in Figure 3. It can be seen any reasonable
heuristic chosen will guide the robot to make left and up movements. But when the robot makes the first
three steps, we can see that both the open set and the closed set become empty sets at which point the
algorithm terminates believing that there exists no path where as in reality there existed a path.

We can overcome the incomplete limitation of this algorithm by building a map of the world as we move
along and allowing backtracking only in such exceptional scenarios but this has not been implemented in
this work. Therefore, it is expected that the algorithm will falsely terminate without finding a path under
some specific scenarios.

The heuristic h̄(n) is very nice for offline processing of paths but it encounters a small problem when
we calculate paths online as shown Figure 3. It can be seen from the figure that when the robot is at node
(1.5, 0.5) (shown in the figure in sky blue), both the nodes (1.5, -0.5) and (1.5, 1.5) (shown in the figure
in yellow) have the same cost 3 as per h̄(n). Since in online mode, backtracking is avoided, once the robot
arbitrarily breaks the tie by moving into the node (1.5, 1.5), it loses access to the cheapest path. In order
to overcome this problem, a new huerisitic function was formulated.

h1(n) =
√
SLD ∗ (min(Xdiff , Ydiff)+ | Xdiff − Ydiff |)

where SLD is the short line distance between the node n and the goal position
The logic behind this heuristic can be understood by considering the same example. It can be seen that

the problem discussed above can be avoided, if, for example we would have chosen (1.5, -0.5) instead of (1.5,
1.5). Intuitively, this can be summarized as moving towards the node that has a lower short line distance
in case a tie occurs in h̄(n). Though, we could use a special function as a tie breaker for such scenarios,
it is more desirable to have a heuristic function that handles this more generally. Such a function can be
brought about by multiplying h̄(n) with SLD (Short Line Distance). To make it a admissible heuristic,

3

the positive square root of this product is used as opposed to the product itself, which is not admissible.
It is easy to prove that this function is admissible. It has already been shown that h̄(n) <= C(n), where
C(n) is the true cost. It can be inferred that SLD <= h̄(n) <= C(n), The SLD distance is equal to h̄(n)
in the case of a purely diagonal navigation but smaller otherwise

Figure 3: Problems encountered in online version of Astar algorithm

=⇒ h̄(n) ∗ SLD <= C(n) ∗ C(n)

Taking Positive square root on both sides√
h̄(n) ∗ SLD <= C(n)

Hence, it is proved that this is an admissible heuristic. This function performs better for online version
and is more efficient than the previous one (due to a better preference in the selection of nodes than h̄(n),
which wasn’t selecting right nodes when costs were tied)

Before closing this discussion on heuristic, it can be pointed out that a better huerisitic would have
been h2(n) = 3

√
h̄(n)2 ∗ SLD, since it can be seen that h1(n) <= h2(n) <= C(n). Extending this logic,

one step further we can discover a whole family of heuristic functions

hk(n) = k+1

√
h̄(n)k ∗ SLD

where it can be seen that h1(n) <= h2(n) <= hk(n) <= C(n) and it is pretty intuitive that as k →∞, it
can seen that hk(n)→ h̄(n) = C̄(n), but with increased computation cost and improved performance since
the closer the heuristic function is to the true cost, the smaller its branching factor and hence, better is
its performance. In this assignment work, only h1(n) was used but it is expected that any other function
with an increased k should yield better performance. The results of the online A star algorithm are shown
in the Figure 4 and Figure 5

A.6, A.7: Online Astar with smaller grids

As we can see from Figure 4 and Figure 5 , the robot reaches the goal in all cases. As explained earlier, the
path chosen is not the optimal one. Decreasing the grid size increases the resolution of robotic navigation
but there is a limit to which this resolution can be enhanced depending on the physical constraints of the
robot. For example, for a robot with 0.5 m/s of minimum linear speed and a command sampling rate of
0.5 s, the minimum distance that the robot can travel with a single command will be 0.25 m, which way
past the graph resolution. Hence, the robot will consistently overshoot its target node when executing
the navigation. Another constraint for example could be the turning radius of the robot. In this case for

4

example, when a robot is asked to move towards its diagonal neighbors, the implicit assumption is that the
robot can turn 45 degrees within a distance of 0.1 meters. This may not be satisfied due to the physical
design of the robot and hence the robot could consistently overshoot from its planned trajectory. Thus the
optimum grid size is a clear trade off between movement resolution and physical constraints of the robot.

Figure 4: Results of Online Astar

Figure 5: Results of Online Astar

It is also clear that small grid sizes restrict the acceleration of the robot. For example, if the robot were
forced to follow a sequence of way points each 0.1m apart, it restricts the acceleration of the robot since
it has to make a sequence of small moves. This can be clearly shown by one of the empirical observations
when the robot took 91 steps to reach a node with 0.1 step size, which the robot was able to reach within
12 moves with a step size of 1.0. In the case of 1.0 step size, the robot has longer distance to travel
between each commands and hence can utilize its acceleration fully and increase it velocity to achieve
faster navigation whereas the robot will move at a very slow velocity if a very small step size like 0.1m
is used. Therefore, the correct grid size will take into account the physical constraints of the robot, the
acceleration limits and the navigation resolution needed.

A hybrid and more superior approach would be to use both coarse grids and fine grids: coarse grids

5

when we encounter large unoccupied spaces and switching to finer grids once we get close to the goal
destination or when we encounter obstacles.

A.8: Controller Design

The motion model that has been assumed for this robot is the unicycle model. Its dynamics model is given
by

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = ω

where ẋ is the x velocity, ẏ is the y velocity and θ̇ is the rate of rotation, which is the same as the
angular velocity command given to the robot, v is the linear velocity command given to the robot and θ is
the current orientation of the robot (here it refers to the yaw angle since the robot is restricted to moving
in a planar motion)

A PID controller was used to control the heading angle of the robot while a P controller was used to
control the robot’s velocity. The equation of a PID controller is given as

u(t) = kP e(t) + kI

∫ t

0
e(τ)dτ + kD

de(t)

dt

Where kP is the proportional term and adjusts the output signal proportional to its error
KI is the integral term which accumulates error over time and adjust the output signal. This means that
even if there is a very small error over a long period of time, this term will respond to that and correct
our values to achieve perfect tracking. Since, the proportional term cannot get us precisely to the target
value, the integral term is included so that we can get more precise. It must be noted that very high kI
values will can lead to oscillation in the system
kD is the differential term and corrects the velocity values in response to sudden changes within the system.
It must be noted that very high KD values will make the system very sensitive to noise.

In our case, since the pid controller is used to control the robot’s heading, the error term e(t) = θg−θ(t),
where θg is the goal orientation we wish to reach and θ(t) is the current orientation of the robot. Since we are

dealing with a discrete case here, the intergral term
∫ t

0 e(τ)dτ just reduces to the term
∑i=t

i=0 ei(t)∆t, where
ei(t) refers to the error term at the time time step i and ∆t refers to the time interval between successive

velocity commands and the differential term de(t)/dt just reduces to e(t−1)−e(t)
∆t

. Thus the expression for
ω(t) can be written as

ω(t) = kwpe(t) + kwi

i=t∑
i=0

ei(t)∆t + kwd
e(t− 1)− e(t)

∆t

where kwp, kwi, kwd are constants and their values for this application were tuned to be kwp = 0.75, kwi =
0.75 and kwd = 0.3. It can be noted here that high values for kwi makes the robot go in loops where as
higher values for kwd makes the robot very sensitive to noise and overcompensates for the noise in the
system by adjusting θ(t) heavily. This is clearly illustrated in the figure given below.

The expression for linear velocity is given by, v=
√
ẋ2 + ẏ2. In discrete case, this can be rewritten as

v=

√
(∆x

∆t
)
2

+ (
∆y

∆t
)
2

We use a proportional controller for our linear velocity, therefore the expression for
the linear velocity term becomes

v(t) = Kvp ∗

√
(
∆x

∆t
)
2

+ (
∆y

∆t
)
2

6

The value of Kvp used in this implementation is 0.7
The equations look fine but the one important thing that hasn’t been taken into consideration is the

acceleration limits of the robots. The given acceleration limits are av = 0.288m/s2 and aw = 5.579rad/s2.
This implies that we cannot increase or decrease the linear velocity of the robot by more than av∆t and
angular velocity by more than aw∆t at any moment. Therefore, taking this into consideration

ωc = min(| ω(t)− ω(t− 1) |, aw∆t) and vc = min(| v(t)− (̌t− 1) |, av∆t)

And, finally,we have

ω(t) =

{
−ωc if ω(t) <= ω(t)

ωc if ω(t) > ω(t)
v(t) =

{
−vc if v(t) <= v(t)

vc if v(t) > v(t)

This just corresponds to increasing or decreasing the velocity by atmax acceleration times ∆t. If the
velocity change required is less than acceleration times ∆t, then that update is carried out without any
modifications. But if the velocity change required is more than acceleration times ∆t, then the velocity
change is capped at acceleration times ∆t. The noise associated with the controller motion model is
assumed to be a gaussian noise with variance of 0.01 (1cm) in case of x and y co-ordinates and 0.02 (1
degree) in case of robot’s orientation

B.9 - Results discussion on the controller

The results of the applying the controller are shown in the figure below

Figure 6: Using Controller to navigate paths generated by AStar

It can be seen that the robot follows the trajectory smoothly. However, these were the results of
carefully tuned parameters values kwp = 0.75, kwi = 0.75, kwd = 0.3, kvp = 0.7. As explained in the
controller design, values of kwp > 0.75 causes the robot’s orientation to oscillate and forces it to go in loops.
This phenomenon is clearly observed in the Figure 8, where the robot starts looping in the highlighted
area. Another experiment was run using kwd = 0.7. This value makes the robot too sensitive to noise and
disturbs the smooth motion of the robot. This phenomenon is clearly observed in the Figure 8, where the

7

robot does eventually reach its goal destination but it makes a lot of unnecessary rotations, in response to
the noise in the sytem, where it ends up overcompensating due to the high kd value.

Figure 7: (On the left) Effect of using a high kwi value(0.95) and (on the right) Effect of using a high kwd

value(0.7)

The values of kwp and kvp are little interdependent. An experiment was run using high kwp value (0.85)
and high kvp (0.7) value. It can be seen from the figure that in such a setting, the robot overshoots from its
trajectory sometimes. When the same kwp (0.85) was used with a lower kvp value (0.1), overshooting didn’t
happen. This observation is consistent with our logical notion that when the robot posses high linear and
angular velocities, the robot loses its ability to take sharp turns and hence, the radius of curvature of the
turning tends to be larger. It must also be noted that very high kwp starts inducing oscillations regardless
of its kvp. The logical explanation behind this fact is that if the robot rotates too fast, the probability
of hitting its intended orientation reduces and hence it starts rotating in place until it finds the target
orientation.

(a) kwp =0.85, kvp =0.7 (b) kwp =0.85, kvp =0.1

(c) kwp =0.95, kvp =0.7

Figure 8: Effects of varying kwp and kvp values

Thus, based on the above observations, it is safe to hypothesise that there is a threshold for kwp below
which kvp and kwp can be adjusted inversely to achieve smooth navigation. This means that the ability
of the robot to take sharp turns can be controlled by these two parameters. But beyond this threshold
for kwp, it becomes difficult for the robot to hit its intended orientation accurately. Though a rigorous
mathematical proof has not been presented to validate this hypothesis, its seems a pretty intuitive to be

8

true based on empirical observations. The value of this threshold was found empirically to be 0.90, which
means beyond when kwp > 0.9, it is pretty difficult or nearly impossible to achieve smooth motion. But,
below, this value, some combination of kwp and kvp wiil always exist to help us achieve smooth motion.

B.10-Planning while driving

The only change that is needed so that we can plan while we drive is to replace the path (or the sequence
of nodes) that was obtained by running the Astar algorithm before staring the controller by the output
of the motion model on the fly. Now the motion model tells the robot where it ended up after navigation
and Astar access all the neighbors of the current position and gives the next node to follow. All the other
aspects of algorithm construction remain the same as before. The results of applying this modification are
shown below

It can be seen that the robot planning is no longer smooth since the robot does not land exactly
where it plans to travel due to noise and hence, its path is altered periodically to offset the error due to
noise. Previously when we used the path from the Astar algorithm that was processed before starting the
controller, the sequence of nodes in the path offered very smooth directions to travel whereas now, the
robot has to plan based on whereever it ended and hence, we could see frequent changes in its directions.

Figure 9: Planning while driving

B.11 - Coarse Vs Fine Grid

Figure 10: Coarse vs Fine grid comparision

9

Figure 10 and Figure 11 tell a clear story about the tradeoffs offered by grid sizes. It is very clear that
smaller step sizes end up finding the shorter path because they can walk through smaller spaces inbetween
obstacles which would otherwise show up as occupied nodes in case of a large step size but they don’t offer
the same smoothness that a larger grid offers. The figures on the right (smaller step size) clearly don’t
have the same level of path smoothness that is existing in larger grids.

Figure 11: Coarse vs Fine grid comparision

B.12 -Simplifications made by our simulated controller

Some of the simplifications made by our simulated controller are as follows
1. Absolute certainity about transition: Though noise is introduced into the motion model to account
for the fact that transitions are not fully deterministic, after transition we assume that the robot has
absolute certainity about its present state. This is definitely not true. Depending on the application,
this could involve using filters to localise the robot with sensor readings and known landmarks or in
more complicated cases involve algorithms like SLAM for simultaneously doing the mapping as well as
localisation
2. Simplification due to unicycle model: For simplicity, a unicycle model is assumed in this assignment.
A real robot would involve a lot more controls than just v and ω. For example: A differential drive robot
would actually involve 4 different controls, v1, v2, ω1, ω2 and its design would also require the knowledge
of some details of the robot hardware like the distance between the wheels and radius of each. Though it
is fairly straighword to map a unicycle model controls to a differential drive controls to achieve the same
motion, a mapping is not always straighforward and in some case may force us to use a more complicated
controller with lot more controls.
3. Simplified action model of the robot: In this problem, the action set of the robot at any point is
only 8. But in reality, the robot has the ability to make more than just 8 transition. Depending on the
turning resolution of the robot, the number of states that the robot could transition into can be a lot more
than just 8. Though this does not stop this simplistic model to establish navigation between two random
points, it can be argued that the efficiency of navigation can be improved a lot more if more transitions
are accounted for.
4.Incomplete Astar algorithm - It has already been pointed out earlier that the online version of this
algorithm is incomplete. Hence, we will need to map the world as we move along to allow backtransitions
to take place to make this algorithm complete.

10

