
A survey on VSLAM and Visual odometry for

Robotics

1st Senthil Palanisamy

Student

Northwestern

senthilpalanisamy2020@u.northwestern.edu

Abstract—The goal of this survey is to gain a broad knowledge

on the techniques of SLAM and to gain an insight into the

evolving role of vision in present day SLAM. The primary

objective is not to be coarse and learn these systems at a

block diagram level but to dig deeper and understand them

at the mathematical formulation level. Visual SLAM is a huge

community. With the introduction of new sensors, the role of

vision in SLAM is actively getting redefined. The paper selection

methodology is such that papers are sampled across all sensing

modalities that can be used in combination with a vision system.

Attention was also paid to distribute papers across different

SLAM frameworks and visual SLAM techniques. Thus at the

end of this paper, it is my primary objective to be well versed in

all of the vocabulary used across all of visual SLAM system and

to summarize my understanding and inference in a clean way

for future reference.

I. INTRODUCTION

SLAM stands for simultaneous localization and mapping.

It is the act of inferring motion as well reconstruction of the

whole map which was navigated. In terms of rigid body like a

camera, the localization is about estimating a trajectory of rigid

body transform (Rotation and Translation) as well as trying to

reconstruct the 3D map structure through the images. There

are three types of approaches in doing visual slam. A concise

block diagram of the whole system is shown below

Fig. 1: A block diagram view of a SLAM system

We will discuss a few broad classifications of SLAM system

in this section before stepping further, based on classification

presented in [21]

Bases on the kind of features used in the visual pipeline

of the SLAM system, a SLAM system can be categorised as

follows

• Feature based - Features are detected in every frame and

then these features are matched to estimate the camera

transformation

• Direct image - Image is directly used without any feature

extraction step

• Semi direct - A hybrid between both. Direct methods are

used for estimating the local point cloud. while feature

based methods are used for aligning the point cloud and

estimating the camera pose.

Based on type of sensor used, a Visual slam used can be

categorised as follows

• Monocular - A single camera is used

• Stereo/ MultiView - Two cameras or more than two

cameras are used

• RGBD - Depth cameras are used.

• visual-inertia - Inertial sensors are used along vision

sensors

Based on the technique for information fusion between

different sensors with the system, a SLAM system can be

categorized as

• tightly coupled - All Probabilistic filters fall into this

category. The information esimate from each sensor is

fused at each possible time step.

• loosely coupled - A trajectory estimate from two different

sensing modalities are obtained in isolation and integrated

finally. Tightly coupled systems are more accurate than

loosely coupled systems but are more expensive.

Based on the density of features mapped by the SLAM

system, it can categorised as follows

• sparse- Only a few features are mapped by the SLAM

system. All feature based approaches fall into this cate-

gory

• Dense- A dense reconstruction of the scene obtained. It

must be noted that not all direct method are dense. In

fact, they are quite a lot spare direct methods as well

Based on core technique used for trajectory and map esti-

mation, SLAM systems can be categorized as

• Filter based - The core of state and map estimation is

recursive bayessian estimation

• Optimization - States and map points are obtained by

optimizing the bundle adjustment cost function.

II. CONCEPT GLOSSARY

In this section, the basic concepts and notation used in

structure from motion problems or visual SLAM are briefly

described. This section is an summary of all keys ideas I came

across while doing the survey.

Fig. 2: An illustrative image for a two view setting

• Epipolar constraint: The camera centers and the 3D

point being lie on the same plane. The epipolar constraint

is compactly written as

xT2 T̂Rx1 = 0 (1)

where x2 and x1 are normalised pixel co-ordinates (pixel

co-ordinates which have been converted to to 3D location

on the virtual image plane, where the z component of the

homogenous transformation is one. It must be noted that

the process of normalisation invloves the knowledge of

Intrinsic parameters of the camera). The above constraint

can be more intuitively understood by analysing the same

idea from the view of a vector triple product. The fact

that three vectors a,b and c lie on a plane is the same as

stating that the volume of the paralleopiped spanned by

these vectors is zero, which can be mathematically stated

as

aT (b× c) = 0

In our case, the fact that the vectors
−−→
o1X,

−−→
o2o1 and

−−→
o2X

all lie on the same plane can be represented as

volume = xT2 (T ×Rx1) = 0

=⇒ xT2 T̂Rx1 = 0

The matrix E = T̂R is called the essential matrix

The points e1 and e2 where the line joining the camera

centers intersect with the image planes are called the

epipoles.

• Fundamental matrix If the intrinsic calibration of the

camera is unknown, the epipolar constraint can be ex-

tended to include the calibration equations,

x̀2
TK−T T̂RK−1x̀1 = 0

F = K−T T̂RK−1 is called the fundamental matrix.

This is useful in cases where reconstruction is desired

with unknown calibration. There is a more nasty case of

this equation where images are taken from two different

cameras with unknown camera calibrations

x̀2
TK−T1 T̂RK−12 x̀1 = 0

Typical calibration with unknown camera parameters is

not studied extensively since its often deemed an unnec-

essary problem to be solved.

• 8 point algorithm: [32] is one of the most basic and first

proposed algorithms for reconstructing a 3D scene. This

algorithm proves that the 3D structure can be recovered

from 8 point correspondences between the two views. The

various steps in the algorithm are quickly summarized

below

– Approximate Essential Matrix computation: The

epipolar constraint in stated earlier can be stated in

a slightly different way as

xT2 Ex1 = aTES = 0

where

ES = (e11, e21, e31, e21, e22, e22, e31, e32, e33) ∈ R9

is a vector containing all entries of the essential

matrix

a = (x1x2, x1y2, x1z2, y1x2, y1y2, y1z2, z1x2, z1y2, z1z2)T

a ∈ R9 is the kronecker product of x1andx2 For

n points, which gives n linear equations the above

equations can be further extended as

ξES = 0

where ξ = (a1, a2, ..., an)T ∈ R9×n The null space

of the matrix xi gives the solution for the essential

matrix

– Projection into essential space: The essential ma-

trix computed above does not fulfill all the necessary

constraints for a matrix to be essential. It turns out

that the necessary and sufficient condition for a ma-

trix to be essential is that the first two singular values

are equal while the third is zero. In order to project

this matrix into the essential space, its factored ac-

cording to its SVD values E = Udiag(σ1, σ2, σ3)V T

The first two singular values (sigma1, sigma2) are

replaced by σ = σ1+σ2

2 while the third singular

value is replaced by zero. Thus the projection of the

matrix computed in step1 onto the essential space

then becomes E = Udiag(σ, σ, σ3)V T . This is the

solution to minimizing the Frobenius norm between

the computed matrix and its projection in the es-

sential space. In general, since we fix an arbitrary

scale for the baseline, the first two singular values

are replaced by ones, resulting in projection into the

normalized essential space. E = Udiag(1, 1, 0)V T .

– Recovering displacement: Since we know that es-

sential matrix E = T̂R, the problem of recovering

camera displacement becomes a matrix decomposi-

tion problem of the essential matrix. The solution for

this decomposition turns out to

R = RTZ(±π
2

)V T

T̂ = URZ(
π

2
ΣUT)

where RTZ stands for rotation about Z axis

One key point about this algorithm is that it decouples the

structure and motion estimation into two separate prob-

lems, estimating the structure and the motion separately.

• Bundle Adjustment: The 8 point algorithm is not the

best method to be used especially when there is noisy

data. The algorithm is not robust meaning that there

is no guarantee that for small changes in the observed

pixels due to noise, there will only be a small change

in the estimated 3D points or camera motion. For a two

view case with N points, the cost function for bundle

adjustment can be stated as follows

E(R, T,X1, ..., XN) = Σj=Nj=1 |x̃1
j−π(Xj)|2+|x̃2j−π(R, T,Xj)|2

This cost function aims at minimizing the reprojection

error between the observed 2D co-ordinates and the 2D

coordinates obtained by projecting the 3D point onto the

image planes. It is quite straight forward to extend the

same cost function to M views as follows

E(R, T i=1..m, Xj)j=1..N = Σmi=1ΣNj=1θij |x̃1j−π(Ri, Ti, Xj)|2

where the reprojection error of all N points is minimized

across all m views. It must be noted that a given point

may not be visible in all of the m views, the θij accounts

for this by making the whole cost function zero if a given

point j is not visible in the view i and one otherwise i.e.,

θij = 1 if the point j is visible in the view i and θij =0

otherwise. It must be not that the above function is non-

convex and hence, there aren’t any closed form solutions.

Therefore, we must resort to iterative methods to find the

minima of the bundle adjustment cost functions.

It can also be seen that the cost function is unconstrained

but in reality the projection of points between two views

is bound by epipolar constraints. Therefore, the same

optimization can also be performed in a constrained

setting by incorporating the epipolar constraints.

E(xj1, λ
j
1, R, T) = Σj=Nj=1 |x̃1

j− ˜
xj1|2+|x̃2j−π(Rλj1x

j
1+T)|2

An alternate formulation of bundle adjustment cost func-

tion is to have simple least square cost function that

minimizes the error between the true 2D co-ordinates (xji)

and the observed 2D co-ordinates x̃ij but the values that

xji can take on are constrained by the epipolar geometry

i.e.,

E(xji j=1..N , R, T) = ΣNj=1Σ2
i=1|x

j
i −

˜
xji |

2

such that xjT1 T̂Rxj1 = 0, xjT1 e3 = 1, xjT2 e3 = 1 j = 1,...N

• Types of Bundle Adjustment: There are small variants

in Bundle Adjustment, that are often discussed without

reference. Here is short summary of the concept taxon-

omy

– Motion only BA / Pose Graph Optimisation: The

optimisable parameters are only the camera move-

ment and hence, the map parameters are fixed. This

is known as motion only BA and seeks to optimise

the same reprojection error but with known and fixed

map.

– Structure only BA: The optimisable parameteres are

only the map points or the structure parameters with

a fixed camera locations. The same reprojection error

is used in this case.

– local BA This is the whole Bundle adjustment where

both camera parameters and map parameters are

optimisable in the reprojection error but it is done

only in the vicinity of the current frame being

observed. What constitutes small vicinity is down

to the hueristic of the author in the paper.

– Global BA / BA: When BA is simply specifcied as

”BA”, it simply refers to the Global bundle adjust-

ment where the all points in the map are projected

into all key frames and the reprojection error across

all frames and points are optimised. It must be noted

that Global BA is extremely costly and only done at

the end of the optimisation pipeline where a good

estimate of parameters have already been obtained

and its only done to refine the accuracies further.

– Iterative Point Cloud: This is closely related to the

idea of Motion only BA but the key difference here

is that the depth of 3D point correponding pixel is

known and is a fixed quantity. Thus in this technique,

we seek to find the motion of the camera that algin

the point cloud that we observe in the current frame

with the existing point cloud we have observed so

far.

– It must be noted that there can be combinatorics

between the sets {Motion only, Structure only and

plain} with {Global, Local}, which means that there

can be global motion only BA or local Structure only

BA etc.. But when something is plainly specified

as BA, it generally refers to Global BA with both

structure and motion optimisation unless otherwise

specified within the context

• Camera Pose Parameterisation: The camera Pose is

a 6 DoF system and it sounds natural to represent this

by a six parameter explicit representation. This kind of

representation though is the most straightforward param-

eter representation to optimise over, doesn’t turn out to

be ideal particulary due to the singularities associaties

with Euler Angle representation. Therefore, typically,

an over parameterised system is employed so that it is

singularity free but this now means that constraints have

to be imposed on the extra degrees of freedom during

optimisation. The standard representation choice is the

SE(3) matrix. A standard SE(3) matrix can be defined as

SE(3) ≡ g =


 R T

0 1


∣∣∣∣∣∣∣R ∈ SO(3), T ∈ R3

 ⊂ R4x4

It can be clearly seen that this is an over parameterised

system, with 16 parameters and there has to be some

constraints. The constratints arise from the fact that

R ∈ SO(3), which means that R has to satisfy the

following constraints RTR = I and det(R) = 1,

which is a very concise and elegant way of specifying 6

constraints of roatatin matrices. The bottom most row of

the SE(3) matrix are always [0, 0, 0, 1], which altogether

specifies 6+4=10 constraints. Therefore, camera poses

are represented by an overparameterised 16 parameter

system, with 10 constraints and this is nasty problem for

optimisation. The easier way to solve this problem is not

to solve this optimsation problem in the space of SE(3)

but in its lie Algebra se(3). A compact way of specifying

the relationship between SE(3) and its lie algebra se(3)

is as follows

exp: se(3) → SE(3); ζ → eζ

log: SE(3) → se(3); eζ → ζ

The lie algebra of SE(3) ζ is called the exponential co-

ordinates of SE(3) or sometimes called the twist co-

ordinates and is an easier space to optimise over since

ζ ∈ R6 and therefore is a more explicit parameter space

to optimise over. It has to be noted that there is a bijective

mapping between SE(3) and se(3) meaning for every

element in SE(3), there exists a unique element in se(3)

and vice-versa. It has to be noted that taking large steps

in se(3) space is not a good idea since the se(3) is a tanget

space to SE(3) at the identity and can be considered to

be a linear approximation to the actual SE(3) manifold

but for our purposes where the pose change between any

two camera frames is not so significant, we can safely

optimise in the linearly approximated lie algebra space

se(3).

• Similarity Transform: With a single monocular camera,

structure from motion estimation always comes with an

inherent scale ambiguity. Imagine moving camera at a far

away distance from a huge building and moving the same

camera at a very close distance to a toy building which

have the same visual appreance. It can be shown through

such examples that we can get two completely different

solution for images which look the same but generated

under two very different settings. This is root cause

of inherent scale ambuiguity in Monocular systems and

hence the estimates are only upto a scale. Mathematically,

a similarity transform can be written as

S =

 sR T

0 1


where s ∈ R+ is positive real number. These similarity

matrices also form a group SIM(3) and we can construct

an analogous lie algebra sim(3) for the group so that we

can a more explicit parameterisation to optmise over. The

elements of this lie algebra ζ ∈ R7, which is logical since

we have 7 degrees of freedom in a similarity transform.

We can jump between the lie group and lie algebra

through logarithms and exponentiantions similar to SE(3)

group.

• Why inverse depth is the right paramterisation choice

rather than the actual depth: [3] proposed that using

inverse depths instead of depths improves the perfor-

mance of the system. The limitations of direct depth

parameterisation are

– delayed Point initialisation: When points are first

initialised they never contribute to the whole location

or mapping since their uncertainities are high and

they are only added after a few passing frames

reduce the uncertainity in depth. The key insight to

see how points with uncertain depth can contribute

to the system is that points with uncertain depth

contribute very little in the camera translation they

serve as very useful bearing references for rotation

calculation. Probabilisitcs framworks before this took

a very conservative approach towards this by not

including points in SLAM processing pipeline until

the depth of points have been estimated with very

low uncertainity.

– Points at Infinity: Points at infinity produce very low

parallax or disparity and hence, they usually don’t

make it into the SLAM pipeline. An example of

a paricle at inifnity could be a star in the sky

which is obeserved when viewing an image of the

road. While these infinity points don’t contribute to

camera translation, they are very good landmarks for

estimating camera rotations.

Inverse depth parameterisation can be understood by

looking at the picture given below Instead of using special

treament for uninitialised points or points at infinity, [3]

proposed a unified framework under which this can be

handled elegantly.

Fig. 3: Inverse depth parameterisation

While a Eucledian 3D point is represented by (Xi, Yi, Zi),

a point in inverse depth is represented by yi =

(xi, yi, zi, θi, φi, ρi)
T where xi, yi, zi refer to optical

center position of the camera in world co-ordinate frame

from which the point was first observed. θi, φp refer to the

azimuthal angle and elevation angle and ρi is the inverse

of depth of the point (1/d). In particular, a point in 3D

can be represented as

xi =


Xi

Yi

Zi

 =


xi

yi

zi

+
1

ρi
m(θi, φi)

where m = (cosφisinθi,−sinφi, cosφicosθi)T is just a

unit vector in the direction joining the camera optical cen-

ter with the point expressed in cylindrical co-ordinates.

In simple terms the parameteristaion can explained as a

ray originating from the optical center of the camera from

which the point was first observed and the length of ray

which measures the depth of a point is paramterised by

the inverse depth. In the context of proabablisic filters this

mode of parameterisation turns out to be more useful. The

paper goes on to show that the linearity indexed of the

inverse depth parameterisation is more desirable than the

depth parameterisation. In particular, the linearity metric

is defined to be

L =

∣∣∣∣∣ ∂
2f
∂x2 |µx

2σx
∂f
∂x |µx

∣∣∣∣∣
From the equation, we can clearly see that the Linearity

term is the ratio of second derivative of a function at the

point µx to its first derivative at the point mux multiplied

by the covariance associated with x. Thus, if the function

were close to linear, the second order term will be

zero or much smaller in magnitude when compared to

the first order derivative. The paper goes on to show

that bayessian filter measurement update when applied

to inverse depth parameter has much smaller linearlity

index when to compared to the one with direct depth

parameterisation and thus more desirable in the context

of bayessian filters. Furthermore, point with infinte depth

can be represented safely and thus contributes to system

information. Point can be initialised instantly and directly

put into the pipeline without having to worry about their

uncertainity in depth.

The depth estimation in SLAM system particular in

outdoor can sometimes be infinity. Imagine looking at

the sky where the objects are faraway. We would observe

zero disparity or little disparity for the same feature

point observed from two views, the distance estimate

shoots upto infinity. To avoid this, an inverse depth

parameterisation is usually a safer choice since we are

unlikely to see points with zero or close to zero depth

(unless there is some sticker attached to the lens of the

camera) in our observation scene thereby eliminating the

infinity problem.

• Surface Representation: Some applications of slam par-

ticularly those from the graphics and AR community try

to model point cloud generated as a surface. [8] proposed

a way to model the surface by using voxels. A voxel is

the 3D analogue of a pixel and is a 3 dimensional cube.

The idea behind Truncated Singed Distance Function is

that the voxel carries a value of zero, for points on the

surface, positive values for points infront of the surface

and negative values for points at the back of it. An

illustraive example of stroing a face as a TDSF surface

is shown below

Fig. 4: An example of a surface to be mapped

It must be noted that this kind of representation allows to

spot the surface easily since we just have to spot the zero

Fig. 5: A TDSF representation of the surface

crossing. It also makes it very easy to render a ray from

the camera as per the model since we have to just follow

decreasing values along a ray until it detects a positive

value. The min and max values are tied between +1 and

-1, beyond which the values default to the respective

extreme values.

• Accuracy Metrics: There are two common error metrics

for comparing the tracjectory of Grounth Truth with the

an estimated trajcetory

• RMSE error: The ground turth trajectory and the pre-

dicted trajectory are aligned at the start point and the error

is the pairwise between between every corresponding

point along both trajectories. An example of such an error

measure is shown below

Fig. 6: RMSE error

• Odometric error: The trajectories are aligned considering

every point in the predicted trajectory as the starting

point and it is aligned against the corresponding point in

the ground truth trajectory and the error is the distance

between the end point on the ground truth trajectory

and the end point on the predicted trajectory after a

few operation sequences (typically 4 or 5). A figure

illustrating the same is shown below. The figure shows

only one term in such calculation- Only the first point is

aligned and an error is estimated after four operations.

The two trajectories will be aligned at every point on the

predicted trajectory and such a measure will be found for

each of those points and summed up

Fig. 7: odometric error

• Optimisation methods: There are various methods to

optmise over the bundle Adjustment cost function given

above. In general, this class of problems fall into a wider

category of problems known as Non-linear least squares.

A simple least squares formulation can be written as

minx
∑
i

(ai − fi(x))2

where ai is the ground truth output value and fi(x) is the

output estimate for the data point x. When this function

fi(x) is linear, this is called linear least squares and its

called non-linear when fi(x) is non-linear. In our Bundle

adjustment case, the function fi(x) involves a non-linear

projection function and hence, this falls under non-linear

least squares. Some of the optimisation techniques that

have been developed for non-linear least squates are as

follows

– Gradient Descent: The gradient descent just follows

the direction of steepest decent until it hits a local

minima. If E(x) is the cost function to be optimised,

then one step of gradient descent can be written as

xk+1 = xk − ε
dE

dx
(xk)

– Newton’s method: A problem with the gradient

descent above is the step size to choose and newton’s

method solves this probem by constructing a taylor’s

series approximation of the function and moves

towards the point where the approximated function

hits zero and then jumps to the point corresponding

in the actual function. In general, the function ap-

proximation is either linear or quadratic. Quadratic

methods are typically employed and an update step

using a second order newton method is shown below

xt+1 = xt −H−1g

where H is the hessian and g is the gradient. This

method typically converges in few iterations than

gradient descent but it must be noted that hessain

computation is very costly and hence, the time per

iteration shoots up as compared to gradient descent

– Guass-Newton Method: A problem with Newton’s

method is it assumes that the hessian is a positive

definite (so that we are marching towards a minima

point). In cases where its not a positive definite

matrix, the hessian has to approximated by a positive

definite matrix. Gauss-Newton method is one such

method. The hessain can be written down as

Hjk = 2
∑
i

(
∂ri
∂xj

∂ri
∂xk

+ ri
∂2ri

∂xj∂xk
) (2)

Dropping the second term ensures that the hessian

is always positive definite. Hence, Hessian can be

approximated as

Hjk ≈ 2
∑
i

JijJik,withJij =
∂ri
∂xj

More compactly, the Hessain can be written a matrix

way as

H ≈ 2JTJ,with Jacobian J =
dr

dx

Substituting this approximated Hessian and g =

2JT r into the update for Newton’s method leads to

the newton-gauss method

xt+1 = xt − (JTJ)−1JT r

And it can be seen that this approximation is good

only if the magnitude of the second term is much

lesser than the magnitude of the first term in hessian

equality equation

– Levenberg-Marquardt: Newton’s method is good

in the initial steps but as we get closer to the solution,

gradient descent is more efficient. This is the key idea

behind Levenberg-Marquardt method, where a single

iteration update is given by

xt+1 = xt − (H + λIn)−1g

Where H is hessain, g is gradient, and I is the identity

matrix. As we can see, when lambda is zero, the

update becomes equal to newton’s method itself and

as λ→∞, the method almost becomes the gradient

update and hence by varying λ, we get a hybrid

update that is somewhere inbetween gradient descent

and newton’s method.

III. FRONT END- DIRECT/ FEATURE BASED

In this section we will look deeply into a few example

systems for each of feature based, direct image and semi-

direct methods.

A. Feature based SLAM system- ORB/ORB2 SLAM:

[38] integrated a lot of key concepts and developed a

powerful realtime slam. One of the foremost premise of

the work was to use a single feature representation for

both mapping and tracking, where prior works used to

use different representation. This is a very useful idea in

cutting down the runtime of the algorithm. It builds upon

the parallel threads idea of PTAM but uses three threads

instead of two: one each for tacking, local mapping and

loop closing. Each of these are modules incorporating a

lot of key ideas. A detailed description of each of these

modules is given below.

– Tracking:ORB features are extracted for the current

frame being viewed. A constant velocity motion

model is used in predicting the expected pose of the

camera if the previous tracking was successful. If

this constant velocity motion is full-filled, a narrow

search of map points is enough where as a wider

baseline search is needed if the assumption is vio-

lated. The camera pose is then optimized with the

known correspondence. It can be noted here that the

optimization performed here is a motion only BA,

meaning that the map points are fixed and the pose is

optimized. If tracking is lost at any poit, the pose of

the camera is initialized using a global query search

using bag of words. This means a Bag of Visual

words is extracted for each frame and each words is

stored in the database along with a list of all the key

frames in which they occur. One a key frame with

enough correspondence is found, the camera pose

is reinitialized using PnP solver. Once the pose is

estimated, all stored map points are projected into

the new frame and new points are added to the map

if point pairs with strong correspondence is found.

A very generous strategy is used in deciding if the

new frame under observation can be given the status

of a key frame. The selection rules used mostly

revolve around uniqueness and trackability of frames

(In simple words, the rules can be thought of answers

to questions like is this frame really new or redundant

and does this frame have a rich features that can be

tracked). It must be noted here the frames are not

inserted in the tracking thread. The decision about if

a frame can be given the key frame status is taken

om the tracking thread. Insertion and Culling of key

frames and map points are done by the Mapping

thread.

– Mapping: All the camera poses is stored as a graph

data structure. The nodes in the graph are the camera

poses and the edge between the nodes indicates how

many common points exits between the two camera

poses. This graph is called co-visibility graph and

can be very dense and hence, a global bundle adjust-

ment over this entire graph becomes an intractable

problem very soon. Though this co-visibility graph

was already in existence, a novel idea from the

paper was use an essential graph instead of a co-

visibility graph. The essential graph is a spanning

tree of the co-visibility graph (A spanning tree is a

connected graph that contains all nodes from a graph

and has only the least number of edges such that

the resulting graph is still connected. The details of

the essential graph construction is not explained in

detail (A graph could have a lot of such spanning

trees) but it is safe to assume that the spanning tree

whose sum of weight of edges is the maximum is the

one to be preferred. Map points and key frames once

inserted are checked if they are redundant. A stricter

condition is used in key frame culling and map

point culling so that the robustness of the tracking

is improved. A key frame insertion means adding a

node to the co-visibility graph and adding the same

node to the essential graph as well. When adding the

node to the essential graph, the node is connected

to that node which share the most point with the

node. A key frame culling means that the node has

to be removed from both graphs. A node removed

from an essential graph should mean that the graph

becomes disconnected. So a proper spanning tree is

constructed with some heuristics after culling a key

frame.. A local bundle adjustment is performed for

new key frames. This local optimization is just done

over the key frames, its neighbors and the neighbors

of those neighbors.

– Loop closing: Bag of visual words is extracted

from the latest key frame inserted and a similariy

measure is computed for this key frames with all

its neighbors. Let smin be the minimum of all such

similarity measures. Then the database is queried

to see if any other key frame has similar BoW.

All frames whose similarity measure is lower than

smin are disregarded. If frame which has a very

high similarity score is detected, a loop closure is

detected and a similarity transform is computed as

an estimation of the drift in camera pose. To close

the loop, new edges are added in the co-visibility

map so the graph is fused. Finally a pose graph

optimization is done meaning the estimated error in

drift is distributed across the essential graph so that

a smooth trajectory is achieved.

Initialization is one of the prime problems with SLAM

systems and this paper incorporated two alternate mecha-

nisms for estimating it. One is homography computation

using DLT if the scene is planar and the other is funda-

mental matrix estimation using 8 point algorithm is the

scene is non-planar. In reality, both these models are put

into action and a robust heuristic has been proposed in

the paper that automatically chooses the right one, thus

reducing the constraints on pose initialization, which was

problem with previous works.

[37] extended the ORB SLAM idea to stereo and RGBD

images. The key idea in this is the chose of parame-

terisation for representing the point. A stereo keypoint

is represented by xs = (uL, vL, uR) where uL and

vL are the image co-ordinates of the feature point in

the left image and uR is the horizontal co-ordinate of

the matched image point in the right image (rectified

image so that the image correspondences lie of a point

on the left image always lie on a image point on the

corresponding horizontal row). A similar formulation can

be calculated for RGB-D images, where uL, vL can be

calculated with the image of the camera and we can

calculate a virtual right horizontal co-ordinate using the

formula given below

uR = uL −
fxb

d

where fx is the focal length of the lens and b is the

baseline between the light projector and infrared camera

and d is the depth of the point calculated by the sensor.

so we, now, get the same triplet representation for both

stereo and RGB-D images and the rest of the pipeline

can stay the same and build on top of this abstracted

feature. The rest of the pipeline is similar to ORB

SLAM which involves a motion-only BA estimation

with a new frame and then local BA is calculated with

a small neighborhood and then a full BA is calculated

once a loop closure is detected. It has be noted that in

this choice of parameterization, the uncertainty in depth

is actually reflected by the uncertainty in the estimate

of uR which indirectly depends on depth. Levenberg-

Marquardt method is the optimization method of choice

here. The key frame insertion strategy is similar to the

previous work except that we have new information to

utilize due to the introduction of stereo / RGB-D. We

can directly calculate the depth of points from a single

view without any scale ambiguity here and this becomes

very useful. It turns out that close points are very useful

for estimating scale and translation information whereas

faraway points are useful for tracking rotation. For

example: When majority of the key points are faraway

as in the case of a car driving on a road, a good heuristic

for key frame insertion is to check if the number of

close points in the reference key frame has fallen below

a critical threshold and if the current frame can provide

a satisfactory number of close enough points. If the

two conditions are satisfied, the current frame is then

inserted as a new key frame.

B. Direct SLAM system:

[15] was the first system to propose the concept of

direct image alignment instead of using feature based

approaches. The key idea was to model the camera

transformations not as Rigid body transforms but by a

similarity transform to account for the scale drift in the

formulation explicitly. Uncertainty in depth is modeled

by a probabilistic formulation on the inverse depth map.

The key steps in the total algorithm is detailed below

– Tracking This continuously tracks new camera

frames and estimates the se(3) pose of the camera

with repect to the previous key frame.

– depth map estimation This refines or replaces key

frames. The depth is refined by filtering over many

per-pixel, small base line stereo.

– map optimization Once new key frame is added

to the system, the previous key frame is added as

a tracking frame. and it is incorporated into the

global frame. To detect loop closure and scale drift,

a similarity transform to close by key frames is

estimated.

It has a very specific bootstrapping for intializing the first

key frames. Each key frame consists of three things- A

camera image, an inverse depth image and variance of

the depth map.

[14] proposed a direct method of optimization in pixels

rather than computing intermediate feature which SLAM

systems till then were using. To understand how this is

achieved, we must first understand the concept of pho-

tometric calibration. We all know geometric calibration

which relates a pixel to a 3D position and geometry based

on the camera pose. A photometric calibration relates

pixel intensities to irradiance. A photometric calibration

model is written as

Ii(x) = G(tiV (x)Bi(x))

where Ii(x) is the irradiance Bi is the observed pixel

intensities, ti is the exposure time V(x) is the lens

attenuation (also known as vigetting), which is a function

V : Ω → [0, 1] and G(x) is the reponse function, which

maps the light recevied at the sensor to pixel intensities

G : R → [0, 255] The vignetting effect can be best

described by the figure 11.

Fig. 8: Vignetting or lens attenuation effect: Light received
reduces radially from the lens center

Once we have the photometric model correctly calibrated,

we can make a photo metric correction for all pixels in

a given frame of the image using the below expression

Ii(x) := ti(x)Bi(x) =
G−1(Ii(x))

V (x)

Once we have made the photo metric correction, we can

optimize over photo consistency to estimate our unknown

parameters. The cost function can be written as

Epj :=
∑
p∈Np

wp

∥∥∥∥(Ij [p
′
]− bj −

tje
aj

tieai
(Ii[p]− bi))

∥∥∥∥
γ

Here ‖.‖γ stands for huber norm, which is quadratic

in error initially and shifts to being linear. p
′

stands

for a point whose depth is parameterized by its inverse

projection dp.

This cost function is simply a SSD (sum of square

differences) over a small neighborhood of pixels for a

point p which has already been observed in one frame i

and which is now being observed in another frame j. But

this error is only for one point in one frame. Hence to

account for all points in all frames, the full photometric

error can be written as

Ephoto :=
∑
i∈F

∑
p∈P

∑
j∈obs(p)

Epj

This cost function is simply the SSD photometric cost

computed for over every point that is available in all key

frames with the current frame. The whole data is stored

as a factor graph, making it efficient for doing inference

and updation.

Fig. 9: An example for illustrating the factor graph used

A factor graph is a bipartite graph, meaning the graph

can be divided into two groups isolated set of vertices

where in there is no connecting edges between nodes of

the same group. The above figure can be understood by

seeing that each key frame is represented by a unique

node and the inverse depth parameter associated with

each point also forms a node. Each photometric error

term for each point also forms a node. Edges between

nodes just establish the dependency of the cost function

on the parameters it needs. For example, the cost function

Ep12 depends on the p1 in Key frame1 (the source

point:The source point dependency is indicated by blue

line) and its matched against p2 in Keyframe2 (This is the

matching point: The matching point dependency in the

figure is represented by blue lines) and the inverse depth

parameterization of point1 (which is indicated by black

lines). Once we understand this, we can immediately

appreciate the efficiency of factor graphs. A cost function

between points in two frames once calculated can be used

for calculations there after, there by avoiding repeated

computations. The factor graph nodes are updated once

there is a change in any of their connected dependen-

cies. It also has to be noted that this method performs

windowed optimization, which means that the history

maintained is not infinite and hence the keyframe and

points sizes have to maintained at a specified threshold.

Once the keypoints or keyframe count have reached their

maximum limit, the less relevant points and keyframes are

marginalized out. The paper establishes heuristics as to

which frames need to be marginalized. Marginalization

is a better idea than just cutting out history since we

preserve a part of the history. When a node in the

factor graph has to be marginalized, all its dependencies

are integrated across the whole probability distribution

of the given node. Thus this paper incorporates a way

to maintain a compact history that doesn’t run out of

memory.

[23] was extension to DSO, where loop closure feature

was added to the DSO pipeline and a global optimization

was added using a co-visibility graph. Adding a loop

closure feature to a direct SLAM method requires some

revisions in the actual approach itself. Usually, loop

closure are handled by a maintaining a database of BoW

and matching the BoW in the current frame to all the key

frames observed so far. This poses an implicit challange

to a DSO system since direct method typically do not

focus on selecting point feature which are good for

tracking since they rely on pixel intensities. Therefore,

the criterion for selecting points in DSO pipeline is

changed to favor corner like feature points. This also

means that not all points selected are used both for

tracking and estimation. The corner-like points are used

for both build BoW (for loop closure matching) and

tracking while other points are used only for tracking.

This is still in stark contrast to the indirect methods

where corner features are explicitly selected. Here, the

number of features is maintained the same while favoring

selection more towards corner points if they are available.

The BoW used in this work is the Dynamic Bag of Words

(DBoW3). For each loop closure candidate, features in

the frame are matched against reference key frame and

SE(3) transformation is estimated using PnP solver if a

matching frame is found. Once an initial estimate is found

out, the estimate is refined further using Gauss-Newton

method. Not all points that are matched have an estimated

depth associated with them. Therefore, this is accounted

for in the cost function shown below

Eloop =
∑
qi∈Q1

w1

∥∥Scrπ−1(pi, dpi)− π−1(qi, dqi)
∥∥
2

+

∑
qj∈Q2

w2

∥∥π(Scrπ
−1(pj , dpj)− qj)

∥∥
2

(3)

where π stands for the projection matrix and pk stands

for points in the candidate frame and its associate depth

is dpk , qk and dqk stands for points in the matched

keyframes and the inverse depth associated with those

key points respectively.Q1 stands for the set of points

whose depth has been estimated and Q2 stands for the

set of points whose depth has not been estimated. Putting

all this together, all this cost functions tries to accomplish

is to minimize the disparity in the 2D pixel location after

projecting the matched 3D points into the current frame

for those points whose depth is known while also fully

minimisng the difference in 3D point location between

matched points in the two frames for those points whose

depths have been estimated. Its just reprojection error

expressed in different forms depending on what is known:

for feeatures points with unknown depth, the matched

points are projected into the current frame and their

difference is minimised. For those feature points whose

depths have been already estimated, the difference in

the 3D point location corresponding to feature points

are minimised. Global bundle adjustment is costly and

hence only a global pose optimsation is done. These

global optimsations are done in such a way that they

don’t affect the poses in the windowed optimisation. The

pose constraints are represented by a sim(3) constraints

and the windowed optmisation estimates the aboslute

SE(3) transformation between the frames. Once a frame

is to be taken out of the window and marginalised, the

SE(3) constraints are converted to SIM(3) constraints and

inserted into the pose graph.

C. semi-direct methods:

In between the two extremes of direct and feature based

methods are semi-direct method. These methods use

direct pixel based photometric error for aligning two

images and generating the point cloud but the actual

integration of the point cloud into the existing map and

optimizing the camera pose for such an alignment is done

by feature based methods.

[18] proposes a semi-dense direct method. It is semi-

dense because not all the points are used for map con-

structions and only a sparse set of points are used and

it is direct in the sense that its cost function directly

seeks to reduce the photometric error between pixel

patches corresponding to a selected point. Like PTAM,

this method also uses parallel threads where the camera

pose estimation and the mapping are decoupled and run

in separate threads. The camera pose estimation and pixel

patch location estimation proceeds in three separate steps

– Sparse Model based Image Alignment: The rela-

tive transformation between two frames is found by

minimizing the negative log-likelihood of intensity

residuals. An intensity residual is defined to be

photometric difference between two pixel patches

that is viewable in the two views. Here a pixel patch

is a 4 * 4 patch around an image pixel corresponding

to a 3D point which is viewable in the two frames.

Tk,k−1 = argminTk,k−11/2
∑
i∈R
|I(Tk,k−1, ui)|2)

IT,u = Ik(T−1(u, du)− Ik−1(u))∀u ∈ R

where Tk, k−1 is the frame to frame transformation

describing the camera movement and ui is the pixel

patch location This cost function simply means that

we would like to choose that transformation that

minimizes the photometric error of the image patches

observed in two frames. Gauss-Newton method is the

optimization method of choice in this work.

– Relaxation through Feature Alignment: This step

refines the position of image patches based on a fixed

camera transformation and 3D point locations.

ui = argminu′i
1/2

∥∥∥Ik(u
′

i)−AiIr(ui)
∥∥∥
2
,∀i

We seek to make a adjustment to the pixel patch

location here such that the photometric error cor-

responding to reprojection is minimized. A affine

transformation Ai is applied on the reference patch

so both patches are aligned for calculating the photo-

metric cost. It is contrary to the previous step where

no affine correction was used. This is purely because

in the previous step the two frames very close (in

fact, they are consecutive) and hence, there wasn’t

a need where as in this stage, two pixel patches

which are matched may be several frames away and

hence, an affine correction becomes inevitable. A

large patch of 8 *8 pixels is used here.

– Pose and Structure refinement: This is the final

step where the camera pose and map points are

optimised together. Before doing this, all camera

poses are optimized. i.e.,

Tk,w = argminTk,k−11/2
∑
i∈R
‖I(Tk,w, ui)‖2)

The above step is typically called motion only BA.

The difference between the above step and the first

Image alignment step is that the image alignment

step is only for calculating the relative pose between

latest frame and the previous frame while motion

only BA optimizes over all camera poses. Finally,

a local BA adjustment is applied across a local

neighborhood of the latest frame where the pose and

the structure are jointly optimized.

The mapping thread adds new points and initializes their

depth. Recursive bayesian filter

p((̄dki |di), i) = iN((̄dki |di,Σ))+(1−i)U((̄dki |dmini), dmini , dmaxi)

where it can be seen that a normal distribution is picked

with a probability i and a uniform distribution is picked

with probability 1-i. The uniform distribution just account

for outliers and for a proper inlier point, the depth

is assumed to be normally distributed. Once a point

is added, it has very high uncertainty since all points

are intialized with the mean depth of their respective

frames and very high variance. Once points have been

added, they go through multiple measurements before

their uncertainty shrinks and they are added to the map

for motion estimation. The whole image is divided into

30 * 30 pixel grids and a FAST corner with highest shi-

Tomasi score is taken to be the selected point. This is

done across different scales of images and thus we have

feature points distributed through the image at all scales.

IV. STERO SLAM SYTEMS:

Subsequently, the concept of direct SLAM was extended

to stereo systems through [48]. This helps in recovering

the depth of the points accurately thereby eliminating the

scale dirft completely completely. The basic formulation

of the DSO is kept the same except that now we have both

temporal and static steteo contraints. The energy function

that is being minimised can be stated as below

E =
∑
i∈F

∑
p∈Pi

∑
j∈obst(p)

Epij + λEpis

where Epis is the energy arising out static stereo residuals

and Eij stands for the temporal stereo residuals. The

parameters that are being optimised in above two energies

differ. The parameters that are being optimized in a

temporal stereo are ηgeo = (Ti, Tj , d, c) where d stands

for the depth of the points and c is the weighting constant

in the Huber norm and TiTj stand for the transformation

between the two keyframes. With the static stereo, the

geometric parameters being optimized drops down to

ηgeo = (d, c) since the transformation between the two

cameras is fixed. In all these DSO methods discussed

so far, the optimization method of choice is the Gauss

Newton method and a single update of Gauss newton

method is given by

δη = −(JTWJ)−1JTWr

where η stands for the parameters being optimized and J

stands for Jacobian and W is diagonal matrix containing

weights and r is the residuals coming from the least

squares cost function. An update step in Gauss Newton’s

method is given by

ηnew = δη�η

It has to be noted that the function η defined above is

just an addition element in case of adding two se(3) lie

algebra elements but takes an alternate definition when

having one se(3) and SE(3) element. In particular,

� : se(3)× SE(3)→ SE(3), x�T := exp(x̂)T

In partcular, the use of a stereo system in a DSO setting

gives us the following advantages

– Absolute scale information can be obtained. We

get SE(3) transform between frames as opposed to

SIM(3) transform between frames.

– Static stereo provides the initial depth estimate,

which avoids a very specific bootstrapping sequence

that is typically used in a Monocular stereo

– Both of them complement each other in a few

scenario. Static stereo can accurately locate closely

by points while the depth of far away points is

resolved by temporal stereo. They even complement

each other in degenerate cases when epipolar lines

are parallel.

A factor graph is used for tracking information in this

system.

V. COMPLEMENTARY SENSING MODALITIES

In this section, we describe the use of other sensors

that can complement vision sensors to make the SLAM

system more reliable. We restrict our discussion to two

sensing modalities - a RGBD system and Visual Inertial

system.

A. RGBD slam systems:

AR community has a different view to the SLAM prob-

lem. [39] was one of the papers from AR using a depth

sensor camera Kinect. The availability of reliable depth

information from one of the sensing modalities opens up

a new way of thinking about the problem. The basic block

diagram of kinect fusion is given below

Fig. 10: overall system workflow

Since the kinect gives depth information directly, this

information can be transformed to a point cloud directly.

A vertex map point in sensor frame can be represented

as

Vk(u) = Dk(u)K−1u

where u is the homogeneous representation of a pixel

K is the intrinsic camera matrix

Dk(u) is the depth associated with pixel and

Vk(u) is vertex map point in the 3D point cloud. A point

in a map is both represented by a vertex point and a

surface normal. The surface normal can be just computed

by taking the cross products of two vectors connecting

the vertex point with neighboring points. Mathematically,

this can be written as

Nk(u) = v[(Vk(u+ 1, v)− Vk(u, v))×

(Vk(u, v + 1)− Vk(u, v))]

(4)

where v(x) = x
‖x‖2

Thus this normal is a unit vector

perpendicular to the plan containing the vector joining the

current vertex to the vertex immediately above and the

current vertex to the vector right of it, which is very good

approximation for the surface normal at the point. Once

vertex and surface normal are computed, ICP (Iterative

closest Point) algorithm is applied to find the camera

transformation so that the surface seen in the current

frame aligns with the surface existing surface observed so

far. The surfaces are typically represented by Truncated

Signed Distance Function (TSDF) described previously.

The idea of ICP and TDSF have been already described

in the key concepts section. Once a final camera pose

is obtained, the new points seen by current frame are

updated to the global surface maintained in a TSD. Once

both Camera pose and Surface prediction is done, the

surface is rendered from the TSDF data structure so that

the surface mapping can be seen online.

An extension to the original work for kinect fusion was

proposed through [26]. An overall block diagram for the

whole system is shown below

Here we can see that the module added to the whole

system is the generation of synthetic depth map. Once a

reliable or decent reconstruction of the surface geometry

is constructed, a depth map can be obtained internally

Fig. 11: Block diagram of revised kinect fusion

from the system when doing raycasting to project a

view of the surface to the user at the current camera

pose. This synthetic depth map can be used for aligning

the ICP point cloud as opposed to the original 3D

point cloud data from kinect since that can be noisy.

This effectively increases the robustness of tracking. The

authors also propose an extension to the system to allow

slam in a dynamic environment. Since the system uses

a time average of depth maps for storing the surface

depth, the algorithm is intrinsically not affected by small

movements. But the whole pipeline is messed up when

a large object like a human hand moves across a screen

slowly. In order to counter this, the authors use a very

simple strategy. The basic assumption is that the surface

has already been mapped to a reliable measure already.

When a moving object enters the camera’s view, it causes

a huge disparity between the model’s belief about the

surface depth present in a given view point. If such a big

disparity is observed, a 3D connected component analysis

(including depth dimension) is done and the foreground

(where the dynamic interacting object) exists is cleanly

segmented out while the background (already present

surface) is left undisturbed. Using this simple strategy,

the author show great results where users can interact

with the AR environment through hand touches.

B. Visual Inertial systems:

Another line of sensor suites that typically used in a

SLAM system are inertial sensors. [40] was one of the

first succesful visual inertial Monocular SLAM system.

There are two kinds of visual inertial fusion namely

– loosely coupled fusion: Pose estimates are obtained

from the camera measurement and IMU separately

and then the pose parameters are adjusted to mini-

mize the error between the two

– tightly coupled fusion: IMU pose estimates are

integrated with the camera measurement estimate at

every measurement step. Its pretty obvious that a

tightly coupled fusion will give better results but

at increased computation cost. [36] was one of the

first works to talk on the IMU calibration, a multi-

state constraint setup for visual inertial fusion and

a measurement model for IMU. An IMU state is

denoted by

XIMU = [I−TGi bTg GTV I baT GPIT]

Here I is the IMU-affixed frame and G is the global

frame of reference. IGq is the rotation in quaternion

the specifies the rotation from frame G to frame

frame I, GV IGPI are the IMU’s estimate of position

and velocity expressed in G frame and bg, ba are the

bias term in the gyro and accelerometer measure-

ment. Unlike, other sensor, the noise characteristics

of the IMU sensor change slightly with time and

hence, they need to re-estimated on the fly and there-

fore, they are not known parameters but parameters

to be estimated in our pipeline. It must also be noted

that we have a very good initial guess for our these

noise parameters to start with. The methodology used

in the MCKF system is the idea of a multi-constraint

filter. Rather than using the key points observed to

impose pairwise constraints between two key frames,

the paper imposes multi-frame constraint based on

all the key frames in which a particular key frame

is visible. The gyroscope and accelerometer of the

IMU can be written as

âT = at + bat +Rtwg
w + na

ω̂t = ωt + bωt + nw

where â stands for acceleration measurements and

its affect by the bias noise bat. The accelerometer

should also offset for the gravity since it measures

gravity and it is also corrupted by white noise.

With a gyrometer, the angular velocity ω̂ is affected

by both bias noise and white noise. Though there

are few other kinds of noise, there are the most

important ones to model for the purpose of our

experiment. The position, velocity and orientation

estimates with a gyro can be written down as follows

pwbk+1
= pwk + vwbk∆tk+∫ ∫

t∈[tk,tk+1]

(Rwt (ât − bat − na)− gw)dt2

The position estimate of the k + 1th frame with

respect to the world frame w is obtained by adding

the previous position and doing a single integral over

its present velocity and a double integral over its

acceleration. The velocity estimate is given by

vwbk+1
= vwbk+

∫
t∈[tk,tk+1]

Rwt ((̂at)−bat−na)−gw)dt

The velocity is obtained by adding the previous

velcity with the integral of the acceleration at the

frame k.. Finally the orientation of the robot is

estimated by

qwbk+1
= qwbk

⊗∫
t∈[tk,tk+1]

1

2
Ω(ŵt−bwt

−nw)qbkt dt

where
⊗

indicates the multiplication operation be-

tween two quaternions. While the integral term com-

putes the rotation between k and k+1 frames, the

multiplication with the previous rotation qwk ensures

that the global orientation is obtained. There is big

problem with the formulation above and this was

discussed in [20] and [19]. The primary problem

crops up from the fact that IMU runs at a very high

speeds (60 Hz) as compared to normal camera. Since

its huge burden on the computation resources to do

this integration at every frame, the IMU values are

pre-integrated between two key frames i.e., all IMU

readings between two key frames are used without

any measurement correction terms and a final pose

estimate at the new key frame is used for filter-

ing or optimization. However, doing pre-integration

and estimating the robotic movement in the world

frame poses problems since if find adjustment to the

robot pose in the trajectory through optimization, the

whole of calculations have to be carried out again

but it should be noted that the robot movement in

the body frame remains the same between the two

key frames irrespective of its starting pose. Thus the

whole of pre-integration is carried out in the body

frame axis. Thus,

Rbkw p
w
bk+1

= Rbkw (pwbk + vwbk∆tk −
1

2
gwK

2) + αbkbk+1

Rbkw v
w
bk+1

= Rbkw (vwbk − g
w∆tk) + βbkbk+1

qbkw
⊗

qwbk+1
= γ

b
bk
k+1

These equations are just a direct consequence of

changing the frame of reference from the world

frame to the body frame. Here α, β and gamma are

the terms which depends on integration and hence,

these are the values estimated in the pre-integration

and the rest are all constant.

αbkbk+1
=

∫ ∫
t∈[tk,tk+1]

Rbkt ((̂at)− bat − na)dt2

βbkbk+1
=

∫
t∈tk,tk+1

Rbkt (ât − bat − na)dt

γbkbk+1
=

∫
t∈[tk,tk+1]

1

2
Ω((̂ωt, bwt,−nw))γbkdt

The IMU sensor parameters, unlike other sensors,

has to estimated on the fly and visual-inertial align-

ment is a mechanism for initialising the system. The

initialising sequence can be carried out as follows

∗ gyroscope bias calibration: To begin with a

loosely coupled visual inertial fusion is to used

to estimate the IMU bias. The IMU readings

are pre-integrated and an initial SLAM involving

both camera trajectory and map points is obtained

by initializing the vision system with standard

bootstrapping algorithm such as 8 Point or 5 point

algorithm Therefore, the following cost function is

Fig. 12: Pre alignment for estimating IMU bias

minimized to estimate the bias

min
δbw

∑
k∈B

‖qc0bk+1

−1⊗
qb
c0
k

⊗
γ
b
bk
k+1

‖2

γbkbk+1
≈ ˆ
γbkbk+1

⊗
[
1

2
Jγbwδbw]

Here qc0bk+1

−1⊗
qb
c0
k gives the orientation in

quaternion of the k + 1th with respect to the kth

frame as per vision measurements and γbkbk+1
is

the reverse estimate, the orientation of k + 1th

frame with respect to the kth frame. In an ideal

world, the quaternion product of these two will

map to the qauternion with zero rotation for all

three axis but due to inaccuracies and the noise

in the IMU, these measurements will be off and

hence, minimizing this cost function with respect

to IMU bias gives a initial estimate of bias.

∗ velocity, Gravity, Vector and Metric Scale In

this stage the other IMU parameters and the scale

parameter are initialized. The scale parameter

arises since we use a mono ocular system and

hence, we should set the scale to the right value

initially as is done with most slam systems. This

is done by optimizing

χI
min

∑
k∈B

‖ ˆ
zbkbk+1

−H
b
bk
k+1χI

Here χI is the vector consisting of all inter frame

velocities, gravity and scaling constant

χI− = [vb0b0 , vb1b1 , ..., v
bn
bn
, gc0, s]

where vbnbn is the body velocity at the frame n

expressed in the body frame co-ordinates. H
b
bk
k+1

is the IMU measurement model, which converts

IMU measurements to camera poses and ˆzbk+1

bk

is the measurement of the same obtained using

camera.

∗ Garvity Refinement: Though we have estimated

gravity in the previous, a more precise estimate

of the gravity vector can be obtained by incor-

porating another information we know: The value

of gravity. Thus by constraining the magnitude of

gravity vector.

∗ Completing initialization: After these, the global

frame is setup by aligning it with the gavity z axis

and all pre-integrated IMU points are transformed

to world co-ordinates.

Finally, for normal operation, the visual inertial mea-

surements are tightly coupled. A figure illustrating

the same is given below

Fig. 13: An illustration of a tightly coupled VIO system

Thus, the IMU provides transformation constraints

based on its reading and the camera also provides

a set of constraints based on its observation of

landmarks. The error between these two readings are

minimized using least squares error and this gives

the camera trajectory and the landmark points. An

overall block diagram of the whole system is shown

in the figure

First, the measurements are pre-processed: A KLT

tracker is initialized for tracking features in a camera

Fig. 14: Visual inertial system VINS block diagram

and the IMU readings are pre-integrated to find an

initial trajectory. A motion only BA finds the camera

trajectory as per camera measurement and then the

estimates from the IMU and camera are loosely

coupled to estimate the IMU parameters. Once ini-

tialized, the system does VIO bundle adjustments,

which acts in a tightly coupled fashion to integrate

IMU and camera measurements. The algorithm also

actively searches for loop closures using DBoW and

corrects the trajectory using a 4 DoF pose opti-

mization graph if a loop was detected. Here, 4 DoF

system is used instead of 6, since the IMU gives the

absolute values for roll and pitch angles. It can also

be noted that the system can disable map refinement

and run only Motion only BA to estimate camera

trajectory alone for systems with low compute power.

There are implementation an of Stereo visual inertial

system like [45]. in which the scale ambiguity can

be avoided in the beginning due to the use of stereo

system and the mapping points are constrained by

two objectives one due to the static stereo and

the other due to temporal stereo, thereby increasing

accuracy. If one reads through these systems, they

will be quick to realize that most of the formulation

is the except the same at the objective function,

which includes cost for both temporal and static

stereo. It must be noted that stereo visual inertial

systems are expensive in terms of computation costs

as compared to a mono ocular system. Thus most

of the works focus on coming up with effective

strategies that can cut down the computation time for

the system. The authors of the VINS systems also

extend their system further and propose a general

framework for SLAM in [41], where the framework

has the flexibility to support multiple sensors. In

general, local sensors estimate quite precise but drift

prone measurements for SLAM while global sensors

supply coarse but drift free estimation for the SLAM

system. These global sensors are integrated into pose

graph optimization to correct the drift in the system.

VI. INFORMATION MANAGEMENT- GRAPHS AND

FACTOR GRAPHS

SLAM systems are often constrained by memory and

computation power. Therefore, an efficient represen-

tation of data is necessary and inevitable. In this

section we discuss the graph and factor graph way

of data representation.

A. Graph based representation

The poses and the map point observed from each

pose can be represented elegantly as a graph based

framework. The initial framework for such a repre-

sentation was first proposed by Sebastian Thrun in

[46] and later, Cyrill Stachniss wrote a very good

tutorial on its usage in [25]. The basic concepts in

these papers can be described as follows

In the pose graph representation, every pose of the

robot is represented by a node and the edges between

the nodes represent the constraints the nodes have to

obey based on the landmarks they observe from those

Fig. 15: A simple Pose graph

poses. Hence, the objective is to find the values of

these nodes that minimize the error in the absolute

constraint imposed by the landmark observation.

This is done by negative log likelihood minimization

and the solution from this gives the best set of

poses that satisfy the imposes constraints. This graph

optimisation can be posed as non-linear least squares

minimization problem and can be optimized using a

Gauss Newton minimization.

lij ∝ [zij − ˆzij(xi, xj)]
TΩ[zij − ˆzij(xi, xj)]

which states that the likelihood is proportional to

the error between the observed measurement and the

anticipated measurement. zij is the observed mea-

surement and ˆzij(xi, xi) is the anticipated measure-

ment between the points xi and xj and Ω is the in-

formation matrix (inverse of the covariance matrix).

The Mahalanobis distance is used for measuring the

residual between the observed measurement and the

predicted measurement. For notational convenience,

lets define eij(xi, xj) = zij− ˆzij(xi, xj), which just

computes the difference co-ordinate wise difference

between observed measurement and the predicted

measurement. Our objective then is to minimise the

liklihood function

F (x) = Σ(i,j)∈Ce
T
ijΩijeij

Let Fij = eTijΩijeij denote a single term in the like-

lihood function, which just adds us all the residuals

obtained from all such constraints. Our objective now

is to negative log likelihood function

x∗ = xargminF (x)

A solution can be found using Gauss Newton

method, when we have a good initial guess of the

starting position.

Fij(x + ∆x) = eij(x + ∆x)TΩijeij(x + ∆z)

≈ (e[ij] + Jij∆x)TΩij(eij + Jij∆x)

= eTijΩijeij + 2eTijΩijJij∆x+ ∆xTJijΩijJij∆x

= cij + 2bij∆x+ ∆xTHij∆x

where cij = eTijΩijeij , bij = eTijΩijJij , Hij =

JijΩijJij . With this local approximation, we can go

ahead and simplify the likelihood function

F (x + ∆x) = Σ(i,j)∈CFij(x + ∆x)

≈ σ(i,j)∈Ccij + 2bij∆x+ ∆xTHij∆x

= x+ 2bT∆x+ ∆xTH∆x

where c = cij , b = Σbij and H = Σij . Taking

derivative with respect to ∆x leads use to a solution

of minima, which can be written down as

H∆x∗ = −b

x∗ = x + ∆x∗

It must be noted here that x should be in mini-

mum parameter representation or else this iterative

style of optimisation will break down. For example,

a common choice of parameterization for rotation

is to use SO(3) matrices but a rotation has 3

degrees of freedom but a rotation matrix has 9

values and hence, has 6 implicit constraints (This

has been clearly described in the earlier sections).

Therefore, optimizing directly in the SO(3) space

will lead to matrices that violate the constraints,

unless their constraints have been correctly specified

as a constrained optimization problem. But such a

constrained optimization problem is very diifcult to

solve and therefore, an optimization is always carried

out in the implicit representation and is transformed

to the preferred choice of parameterization. This has

also been clearly discussed in the previous sections.

Graph based optimization becomes prevalent in

SLAM system and it becomes inevitable that some-

one creates a graph framework for the larger com-

munity to work with. [30] proposed a general frame-

work for graph based optimization problem. This

framework was setup with an intention to exploit

the spare connectivity of graphs, special structures

of graph that come in SLAM specific problems,

use of advanced spare linear solvers and SIMD in-

structions for exploiting parallelism. Non-linear least

squares optimization for BA can be easily setup in

the framework and can be optimized using Gauss-

Newton method or Levenberg-Marquardt method.

This method was tested in popular SLAM datasets

of 2011 and results show that the framework has

comparable run time performance with state-of-the-

art methods or they were able to beat state-of-the-art

methods with no drop in accuracy.

B. factor graphs

In [13], Michael Kaess proposed a method of

smoothing where having this whole information

actually helps unlike in other cases where it hurts.

A solution to this was proposed based on a matrix

decomposition based on Cholesky decomposition

and later on refined to be a QR decomposition in

[28]. [28] proposed an organized way of storing

all the constraints in the form of a factor graph

to come up with fast inference. An incremental

method of updating the solution is also shown, thus

providing a very powerful framework for inference.

The SLAM problem can be stated as

X∗, L∗ = argmaxX,LP (X,L,U, Z)

= argminX,L − logP (X,L,U, Z)

where X∗ and L∗ stand for the maximum likelihood

estimate of the robot pose and landmark locations

and U denotes the controls applied and z, the

measurements made. Inserting measurement model

and motion model, the maximum aposterior estimate

leads to the following nonlinear least squares prob-

lem with gaussian noise assumption

X∗, L∗ = argminX,L{ΣMi=1‖fi(xi−1, ui)− xi‖2

+ ΣKK=1‖hk(xik,ljk)−zk ‖2}

where f stands for the state transition function

and g stands for the measurement model. If we

approximate these non-linear functions by a locally

linear model, this problem simplifies to a simple least

squares minization problem

θ∗ = argminθ‖Aθ − b‖2

where θ stands for all our parameters including the

pose and the landmarks and A is a large spare

Jacobian matrix that is a linear approximation at

the measurement function and the motion model.

While this a very standard formulation, finding a

solution to the above problem using pseudo inverse

is very difficult since the pesudo-inverse solution

ATA
−1
AT involves inverting such a large matrix

and hence, is not a practical solution. But the matrix

A is very sparse and hence, this can be exploited

to come up with an alternative solution, which is

through QR decomposition. The matrix A can be

factorized as

A = Q

 R

0


The solution to the least square problem can be

rewritten as

‖Aθ − b‖2 = ‖Q

 R

0

 θ − b‖2
Since the norm is not changed due to multiplication

by an orthogonal matrix Q (The Q matrix in QR

decomposition is orthogonal), we can write the same

formulation as

‖Aθ − b‖2 = ‖QTQ

 R

0

 θ −QT b‖2

= ‖

 R

0

−
 d

e

‖2
= ‖Rθ − d‖2 + ‖e‖2

This system is minimized when Rθ = d and e

is the residual of the fitting the given constraints.

The real power of such a factorization comes in

incremental updates. Suppose that we have the QR

factorization of the system with n linear constraints.

Suppose that after making a measurement, we get

one more constraints. Instead of calculating the A

matrix from scratch and computing the whole of QR

decomposition fully, we can proceed to add the new

constraint wT to the existing QR factorization. QT 0

0 1


 A

wT

 =

 R

wT



with new rhs=

 d

γ

. We have to find an orthogonal

matrix R, which removes the last rowwT given in the

matrix A
′}. This is found by Given’s rotation and

that rotation matrix is applied to both LHS and RHS

to get a matrix similar to the sparse representations

obtained earlier and thus leads to incremental and

fast update solutions. It must be noted that the same

procedure when applied in a scenario where a loop

closure is detected leads to the destruction of sparsity

structure within the matrices. Linear algebra comes

to the rescue as variable reordering is applied to

maintain the sparsity structure in the matrix

Until now, we have discussed the whole system

in the context of the linear approximation model

of the measurement model and motion model. In

case of non-linear models, a linear approximation

is iteravity applied iteratively on the solution until

the change in the solution is minimial. This can be

refined slightly for our slam problem since, in slam

we make incremental solving of contraints where

Fig. 16: On the left, The R facor after doing a loop closure and
on the right, the same R factor after doing variable reordering.

each new constraint only affects a local part and the

initial poses to start with for optimsation are good

gueses. Hence, in this context, the relinearisation is

only done when variable reordering is done, which

is reasonable approximation that saves a lot of time.

The interpretation of this QR factorisation as a QR

graph is less obvious and this interpretation was

clarified through the next work [27].

Fig. 17: Interpretation of QR factorisation as a factor graph
and transforming a factor graph into a bayessian network

The Jacobian matrix A can be interpreted as a factor

graph as shown in the figure. A factor graph is a

bipartite graph with two groups of nodes, the variable

nodes and the factor nodes. The factor nodes repre-

sents the contraints imposed on the system through

observations and data association.All parameters to

be estimated (pose and landmark) form a variable

node in the factor graph. The first row the A ja-

cobian indicate that there is constriaint imposed on

the sytem involving l1 and x1. Consequently, this

constriant is represented as factor node in the factor

graph. Edges are drawn from the factor node to both

the parameters involved. The factor nodes are indi-

cated by small black circles in the above figure. Such

a factor graph can be drawn by considering all the

constraints seen by the system in the A matrix. The

same network can be converted to a bayes network

for a bayessian inference or it can also be turned

into a bayessian tree. A method is proposed, which

is analogoues to the QR decomposition in SAM

but the same operation defined on the acutal factor

graph data structure itself, which is more intuitive.

Based on the insights from the new datastrucutre,

the auhtors propose a method for handling non-linear

equations more efficiently through a process called

fluid relineariasation.

VII. DATA ASSOCIATION:

There are multiple instances where the need to asso-

ciate data arises. The use cases are slightly different

but the core of the solution used i.e., data association

is the same

∗ Loop closure: This problem requirement arises

as an idea to correct the drift accumulated in the

system. When camera does a loop in a SLAM

system, we would expect the camera to return to

the starting point at the end of the loop but this

is rarely the case in reality due to drift. Thus, if

a loop closure were detected we can correct the

whole map and camera trajectory to accurately

comply with our observations. For successfully

detecting loop closure a camera has to constantly

keep checking if the current frame being observed

has already been observed any where and initiate

a loop closure correction if a loop closure was

detected.

∗ Kidnapped robot: Kidnapped robot problem is a

scenario in which the robot has lost track of its

state. This could happen when a vision system is

deprived of features when looking at plain wall

for example and hence, the robot may moved into

an unmapped territory and hence loses track of its

state.

∗ cooperative mapping: Many robots could map an

area together and hence the data from all of them

need to associated together to create the full map.

Though these problem statements seem different,

all of them at their core rely on data association,

the ability to a certain image or map being ob-

served has been observed elsewhere before. [49]

gave a broad classification of methods in data

association and compared their results. The data

association can be divided into three broad classes

as shown below

∗ map to map: The map matching tries to find

common features between two map. A approach

like this was first proposed in [4]Though this may

look like the most general approach since it can

use both geometry and visual information, its not

always the ideal way to go forward.

Fig. 18: map to map matching

At a broad level, this method can make use of the

geometric similarities between point cloud struc-

ture in one map with the other while also utilizing

the visual appearance as well. It can seen that

Iterative Closest Point Algorithm is a special case

of this broad class where the visual information

is fully ignored while the geometry information

is fully utilized. The effectiveness of this method

largely depends on the density of points used in

mapping. In a typical landmark based mapping

system, only a few mapping points are used and

hence, to associate two maps, we should have

detected a considerable amount of same points

between both frames to detect a loop closure. In

sparse mapping setting, this rarely detects a loop

closure since there is very low likelihood that the

same set of mapping points were generated from

the two frames.

∗ image to image: This method relies on computing

feature descriptors on each image and estimating

the correspondences between the two frames if a

large number of key point descriptors are matched.

This technique of matching was thoroughly inves-

tigated by [6] While this method does work for

reasonably well, we should understand that we

are throwing away all the geometry information

we know about the structure being observed.

Fig. 19: image to image matching

∗ image to maps This method tries to relocalise

the robot’s view of the current frame with all

the submaps observed in the existing map. [7]

proposed one such method for loop closure. To

do this, first all the features detected on the image

are sent through a classifier, which computes the

posterior distribution of the feature for all the

other features that have been observed so far.

More details on the operation of this classifier

are presented later. Thus for each feature in the

map, we now have potential map by looking at the

class that has the maximum posterior distribution

as given out by the classifier. For each of the hy-

pothesis, a camera pose is reinitialized on that part

of map. This is done in a RANSAC methodology.

First, a three points are picked up at random and

a camera pose is estimated based on the points

and submap. An error is calculated by measuring

the projection error of all the other feature points

that is common both the image and sub map being

tested.

A critical requirement of data association atleast

from a loop closure stand point is the system should

have zero false positives. This is a logical require-

ment since since a wrong loop closure match will

Fig. 20: image to map matching

change the map and camera trajectory in a irrecov-

erable way. [49] investigated and compared the three

algorithms show above and concluded that image to

map points are more suited to SLAM application

which have spare image points. To quote some num-

bers from their paper, map to map matching of [4]

found 0 percent true positive and zero percent true

negatives, which makes it useless. This is primarily

due to sparse map points used and that the algorithms

under the same category perform really well when

dense map are used particularly in case of AR ap-

plications. [6] achieved zero percent false negatives

with 8 percent true positive while [7] achieved zero

percent false negatives with 20 percent true positives

indicating its superiority. It also has to be mentioned

that some hyper parameters in all of the three works

above were purposefully tuned to have zero false

negatives in order to comply with requirements of

loop closure.

One thing that was left blurry in the previous

discussion is how the classifiers are generated in

image to map matching described earlier. [31] was

the first to propose the idea of building tree for

key point recognition. The formulation is such that

the recognition problem is posed as a classification

problem. A diagram explaining the overall system is

shown below

Fig. 21: Random Trees for key point matching

The way the system works is explained as follows.

Each node in the tree represents a binary question.

In particular, it represents if the pixel intensity at a

location a is greater than the pixel intensity at the

location b. Thus each image patch which is to be

tested goes from the top of the tree to the bottom

of the tree going through D binary questions where

2D is the number of leaves in the tree. Each of 2D

acutally represents a probability distribution across

C classes. Thus given a image patch or feature, we

will be able to identify distribution of the probability

indicating the feature classes it is likely to match.

To train such a tree, a feature class to be matched is

taken and a lot of augmented data is computed on

top of the feature (about 400 patches are generated)

and they are then sent down the tree. The probability

of the target node in the leaf it reaches is increased

so that the distribution at the leaf starts moving

towards the target classes it should capture. It can

noted that these binary questions are arranged in a

tree structure since its assumed that there is some

hierarchical relationship between the questions. In

scenarios where this is not the case, a sequential line

of question is asked as shown in the figure below.

The answer to each question produces a bit (0/1) for

the final output string. The answers to each question

are concatenated into a D length string (D is the

number of questions) and this is used to index a

hash table where its target distribution is stored and

updated.

Fig. 22: Random Trees for key point matching

It can seen that the above system is very similar to

the system shown above, except that the questions

are assumed to be independent in which case all

questions are sequentially asked for the image in-

stead of organising the questions hierarchially in a

binary tree. A similar classifier system is used for

matching a given features against all known features

in SLAM system of [7]. for every new feature

detected in the new frame, it is passed through the

classfier and a posteior distribution indicating the

probability distribution of all features it is likely to

match is obtained and the top prediction (provided

that it is above a threshold) is taken out and it is

treated as a likely loop closure candidate for further

analysis.

A common choice in many of these works for

loop closure identifcation is the DBoW. Inorder to

understand DBoW, we should first consider BoW

(Bag of Words) [5]. Bag of Words representation

were historically inspired by its usuage in document

classification, where a document is represented by a

histogram of words. To replicate the same process

for an image, we must first determine what our

dictionary vocabulary is. This is determined through

machine learning from a series of training images.

First, interest points are detected on an image and

desrciptors are built around them. All descriptors

from all images are fed into a K-means clustering

algorithm where these features are clustered. Each

cluster center now represents a vacobulary word

for reprsenting the image. Whenever, we have a

new image to be reprsented, we detected descriptors

throughout the image and associate features to words

in our dictionary. We count the histogram of the

words (Count the occurence of each words) and this

histogram becomes the vector representation for later

classification stages. It has to be noted that choice of

key point detector and descriptor is important and

depends on the problem at hand. The descriptors

have to be invariant to all the variations of the

problems yet dicriminative enough to classify and

should be extractable in a very fast time frame.

A very common methodology used for detecting

loop closures in SLAM system is [22]. It builds

on the Bag of Words concepts. In order to make

computation very fast, binary features are chosen.

FAST is the feature detector of choice and BRIEF is

the descriptor of choice. A BoW is initially built by

training on the targetted application. These words are

organised hierarchially into a tree for easy mathching

and access. A database is used where in an inverse

index is maintained. For a every word that has been

encountered in all keyframes, a list of all images in

which the word occurs is maintained. A L1 score is

used for computing the similariy between two word

vectors

s(v1, v2) = 1− 1

2

∣∣∣∣ v1

|v1|
− v2

|v2|

∣∣∣∣
Hence, for checking if a given image is a likely loop

closing candidate, we build the Bag of words for the

image and query the databse to get all the images

which have a similar bag of words using the mertric

shown above. All s scores are normalised with the

best s score we expect to receive.

η(vt, vtj) =
s(vt, vtj)

s(vt, vt −∆t)

Here we approxiate the best score we expect to

receive to the score between the word vector for

currrent frame and previous frame (which is reason-

able). This may fail in rare cases when the robot is

turning fast for example. We skip those rare images

where such cases occur. A threshold is then used on

the η score to determine if the two words vectors

match. A another problem to factor is that many

sequential frames will match against a given query

frame. Thus query frames, which are closly by in

time are concatenated together to create an island and

an island matching is found. Once island is found, a

temporal check is imposed which means that atleast

k framees in succession should match the same island

to be considered a valid loop closure candidate. As

a final check, geometrical consistency is verified.

First the image which has best matching score for

the current image within the island is selected and

correspondences are found between the two images

to esimate the fundamental matrix. The estimated

fundamental matrix is checked against relative pose

between the two frames. In order to facilitate the

correspondence estimate problem, a direct index is

stored in the database. For each image, for each

word at a level l, its ancestors and all the features

associated with it are stored so that a given feature

can be matched against a very few likely candidates.

Since correspondence estimation is a θ(n2) problem,

this reduces the computation workload into a few

constant operations. This a widely used method for

detecting loop closure candidates in a SLAM system.

VIII. MATRIX FACTORIZATION BASED

SOLUTIONS TO SLAM

There are a few works on posing the Visual SLAM

problem as a matrix factorization problem. In par-

ticular, [47] was the first to point out that such a

solution is possible. For this work, it is assumed

that we are able to observe the trajectories followed

by P points through F frames. Let ufp, vfp be the

horizontal and vertical coordinate of each feature

point P in the frame F. We can store u and v together

in a compact matrix W as follows

W =

 U

V


W is a 2F x P matrix called the measurement matrix.

The rows of these matrices are zero centered i.e.,

ˆufp = ufp − af

ˆvfp = vfp − bf

where af is the mean of all ufp points and bf is the

mean of all vfp points. Now we can organise these

zero-centered points into a measurement matrix

W̃ =

 Ũ

Ṽ


Now we look at the expression for ˜ufp to simplify

this

˜ufp = ufp − af

˜ufp = iTf (sp − tf)− 1

P

P∑
q=1

iTf (sq − tf)

The above expression is just the x co-corindate of the

point p expreesed in the camera co-ordinate system.

This can be simplified as

˜ufp = iTf sp

Similarly, for the y co-ordinate the expression can

be simplified as

˜vfp = jTf sp

Noticing from the above equations, the vector i and

j describe the rotation of the camera frame with

respect to the world frame while 3D points are

described by sp. The vector form of these equations

can be matricized as follows

W̃ = RS

It must be noticed that R is 2F X 3 matrix and S is 3

x P matrix. Thus, if we were above to find a matrix

decomposition to the original W matrix that obeys

the constraints imposed by R and S, we would arrive

at the solution. The solution to this lies in SVD. We

can find the first left and right Eigen vectors along

with their corresponding singular values

Ŵ ≈ O
′

1Σ
′
O
′

2

This approximation follows from the actual decom-

position

Ŵ = O
′

1Σ
′
O
′

2 +O
′′

1 Σ
′′
O
′′

2

But we consider all singular values beyond the 3rd

singular values to be zeros. Whether this is good

assumption depends on the noise level in the system

and in particular, a measure of it can be found by

the ratio of the 3rd singular value to the 4th singular

value which is should be a very high value for this

assumption to hold. Furthermore, we can further

factorize the above equation to match the R and S

dimensions so that we have a factorization solution

W̃ = O
′

1Σ1/2Σ1/2O
′

2

where we can now directly observe that R̃ = O
′

1Σ1/2

and S̃ = Σ
1
2O
′

2 But this solution is not unique and

is only determined to an affine scale. In general, if Q

is any 3 x 3 invertible matrix, a valid decomposition

could be

R̃QQ−1S̃ = R̃S̃ = W̃

We must impost constraints to make the value of Q

unique and the constraints come from the constraints

of a rotation matrix. We now that the basis of the

rotation matrix have to unit vectors and that there

are orthogonal to each other. We can impose these

constraints on the system as follows

îfQQ
T îf = 1

ĵfQQ
T ĵf = 1

îfQQ
T ĵf = 0

These are non-linear constraints but the solution

to this can be found to find the unique Q matrix

which gives the solution. Thus the final rotation and

structure matrix can be written as

R = R̃Q

S = Q−1S̃

IX. PROBABILISTIC FILTERS:

Probabilistic frameworks like bayesian networks

have been extensively tested in VSLAM. Most suc-

cessful of them for a monocular sytem was [9],

where an extended Kalman Filter was used to re-

cursively update the map points and camera state

together. A follow up paper to the original one was

proposed in [12]. The keys ideas in both these papers

can be summarised as follows. The state vector for

the Kalman filter can be written down as

x̂ =



x̂v

ŷ1

ŷ2

.

.


and the co-variance matrix P is given by

P =



Pxx Pxy1 Pxy2 ..

Py1x Py1y2 Py1y2 ..

Py2x Py2y1 Py1y2 ..

. . .

. . .


where x̂v is the state vector of the camera while

ŷi stands for map points. In particular, the state of

the camera is represented (using a smooth motion

assumption) as follows

xv =



rW

qWR

vW

ωW


where rw represents the Eucledian position of the

camera. qWR, the rotation quaternion and vW and

ωW represent the linear and angular velocity of the

camera. It must be noted here that in the prediction

step of the Kalman filter there is no deterministic

motion model update since there is no concept of

control inputs here. But we are just modeling this

as a stochastic process with a smooth motion prior,

which states that the camera can transition to the next

state with a constant acceleration defined by its prior.

It must be noted that a map point is represented here

as a semi infinite ray as explained in the key concepts

section about inverse depth. But here, the direct depth

is modeled instead of the inverse depth but the idea of

a representing a point as a semi infinite ray is utilized

to facilitate instant integration of the point into the

pipeline the moment the points are observed. This

is useful because unlike the Cartesian representation

of a point as X,Y, Z) where the point cannot be

introduced into the map until its depth is determined

to a reliable degree. This method of initialization

introduces 6 parameters for initializing a point, 5

of which are nearly fixed at the point of detecting

the feature. This means that the direction of the

semi-infinite, which is characterized by the optical

center and the azimuth and elevation angles are fixed

while depth is the only uncertain variable that needs

to be estimated.The uncertainty for the depth of a

point is initialized as uniform distribution with 100

particles but replaced with a gaussian estimate once

the depth of the point has been determined to a

reliable degree in [9]. In the follow up paper [12]

the clarify and clearly explain how the bayessian

update for a point with such a parameter is carried.

The whole depth range (0.5m to 5m) where a uni-

form distribution is initialized is split into multiple

elliptical regions for searching convenience. These

hypotheses are all projected into the new frame when

the same feature is observed and the likelihood for

each for the elliptical hypothesis is calculated and

a bayesian update is made to the probabilities of

each of the hypothesis, thereby changing the uniform

distribution prior which sequentially converge to a

distribution peaked at its true depth location after 2-

4 runs where the same feature is observe. Though

this works in a confined indoor setting, the method

does not extend reliably to outdoor settings. This is

very understandable since the core foucs described in

[12] is to achieve reliable tracking through very spare

features. Hence, map produced are very few points

which are very reliable for tracking across view

points. This is one of the downsides of using prob-

abilistic framework. The author report that back in

2007, when the paper was published that the highest

state vector dimension that the then computational

resources could handle was 100. In particular, the

authors have a very hard cutoff of 12 points for the

number of landmarks stored.The other simplifying

assumption made in this work is that the observed

surface is locally planar. This is critical due to two

reason: The system actually observes a patch of

reasonable size (11 x 11) and uses Normalized cross

correlation for finding patches. Hence, each patch

which is added to 3D map is more than a 3D point.

It actually a mini surface. So assuming that the whole

patch which was observed is locally planar is indeed

bad assumption of the real world but the authors

report that the assumption is a good for tracking

within probabilistic framework. This is useful in

setting when we want to find the relative self position

in the given environment but is not very useful when

we want to do motion planning since a free space

doesn’t mean the space is free but it just means

that its not being tracked. Since its a monocular

system, it relies on a specific bootstrapping so that

known objects to the system in the first few frames

so the scale ambiguity in the system is resolved.

In particular, the system always begins its operation

with a rectangular board with four black corner.

This known structure at the beginning of the system

resolves the scale ambiguity and gives reliable points

to track at the beginning of the pipeline. The authors

in [12] further go on to show the effectiveness of

their system by using it for a variety of applications

two systems namely interactive AR and humanoid

SLAM.

One aspect that was briefly mentioned in the descrip-

tion of Davison’s work on MonoSlam is the con-

struction of surfaces as locally planar surfaces. This

assumption greatly aids in matching and mapping. In

[33], Davison explains in detail about such a system.

Firstly, to clarify how this differs from feature point

matching, this is not a single 3D point and hence has

a surface associated with its back projection in 3D.

The simplifying assumption placed in his work is that

patches are locally planar, which means a surface like

a complete sphere would be wrongly captured by the

system but for small regions, it is decent assumption.

A template view of the planar patch is stored and

whenever a matching needs to be found for a patch

in another image produced by another camera view,

the planar image is warped perspectively according

to the estimated transformation between two planes.

The result is that we get prediction of how the patch

is likely to be imaged in the new view, which greatly

helps in finding correspondences. It must be noted

that for this simplification to work, the orientation

of the plane matter. The orientation of the plane is

defined by its surface normal. The initialization of

the normal is done such that is parallel to viewing

direction (line connecting the optical center with

center of the patch). This is definitely not the actual

orientation of the plane but the paper proposes a

method to sequentially refine the estimate of the

surface normal so that the estimate converges to its

true normal. This is done by using gradient descent

on a cost function which measures the differences

between the predicated surface view and the actual

surface viewed. In order to

Fig. 23: A map of landmarks generated with the locally planar
assumption

accomplish this, two things need to stored: The

surface patch (A planar image with its orientation)

and the camera state from which that patch is view.

Whenever the same patch is expected to viewed

from another angle, the planar patch is projected

into the initial camera view and homographically

transformed to the new view so that a prediction of

the warped patch is made. This warped patch will be

nearly the same for small movements but not exactly

due to incorrect surface normal initialization. There-

fore, the surface normal is updated based on this

error and this process is continued and the surface

patch eventually converges to its true orientation (due

to the surface normal update). Once its converged,

it becomes easier to find the where a given patch

occurs in the image since we can easily calculate

a prediction of the warped planar patch, which is

likely to be viewed and hence, the final matching of

the warped patch with an image can be preformed

by simple NCC.

X. ACTIVE SLAM:

Active SLAM considers the SLAM from a different

angle. It tries to solve an interesting question from

an information theoretic standpoint: Which points

should be observed next so that the uncertainty in

the system is minimized. Davison pursed this line of

research for a while and we will discussing some of

his works in this section

In [11], Davison explored on a framework for ac-

tively determining which measurements of already

observed features is near optimal one. In a sense,

he devises a strategy, that given N features in map,

says which is the best feature to take the next

measurement so that the overall uncertainty in map

and features is minimized. Davison’s approach is

hard rooted in sparse features for reliable navigation.

He epitomizes this principle by presenting results of

navigation with just two landmark features. In order

to understand the core of this idea, we must first

understand the concept of a predicted measurement.

The measurement model for measuring the 3D bear-

ing to a feature point can be stated as

hi =


αpi

αei

αvi

 =


tan−1 hGix

tan−1
Giz

tan−1
hGiy

tan−1
Gip

tan−1 1
2‖hGi‖


where

hGi =


hGix

hGiy

hGiz

 =


osφ(Xi − x)− sinφ(Zi − z)

Yi −H

sinφ(Xi − x) + cosφ(Zi − z)


The hGi vector gives the relative position of a

landmark in world co-ordinate frame. Here φ is

the robot heading, x and y the robot’s position in

world co-ordinate frame. Xi, Yi, Zi is the location

of a landmark point in world co-ordinate frame.

The hiG vector is the point transformed into robot’s

coordinate frame and hi is the three bearing angles

extracted from the location of landmark in the robot

co-ordinate frame. The paper introduces the idea

of a innovation matrix to measure the variance of

landmark point. The innovation term associated with

a landmark is given by

Si =
∂hi
∂xv

Pxx
∂hi
∂xv

T

+
∂hi
∂xv

Pxyi
∂hi
∂yi

T

+
∂hi
∂yi

Pyix
∂hi
∂xv

T

+

∂hi
∂yi

Pyiyi
∂hi
∂yi

T

+R

(11)

In [10], a thorough analysis from information theo-

retic standpoint on what is the best feature to observe

next is presented. A short description of how this

is applied to the work in [11] is presented below.

Innovation term in simple terms is measure of the

joint variance (or covariance) of the the robot pose

and other features with a given feature. It is intuitive

from the equation above from the structure of the

summation. The joint probability of a pair (or a

feature with the robot pose or a feature with itself or

pose with itself) is multiplied with the partial deriva-

tive of the hi with the same respective quantities. R

is the measurement noise. This idea of a innovation

is the key behind choosing which is the near optimal

feature to observe next. The volume of the ellipsoid

represented by the innovation co-variance is a good

measure of uncertainty surrounding a feature point.

The volume of the ellipsoid can be written in terms

of the eigen values of the innovation matrix as

Vs =
4π

3
n3σ
√
λ1λ2λ3

Thus if we had 5 landmarks in our map, we would

measure the Vs values for each of landmarks and

observe the landmark with the highest Vs. This

is intuitive from a information theoretic standpoint

because we gain the most by observing something

we are most uncertain about. The most powerful

thing about this framework is its update of covariance

i.e., observing this highest variance point will au-

tomatically decrease the uncertainty associated with

other feature points. Let Vsmax be the maximum

of all Vs calculated for all feature points. This Vs

tells us something important about the system. If

Vsmax is high, it means that there is a feature point

that requires immediate attention, after observing

which the overall uncertainty in the system will

drastically reduce. If Vsmax is low, it means that

all position and landmark locations are very well

determined to a reliable degree. The other point

that has to be emphasized is that innovation term is

solely calculated based on predicted measurements

i.e., based on the robot’s belief about its present

state and the landmark features, it calculates the

information matrix and chooses the highest variance

point. This is enough when the robot is stationary

but when the robot is moving and the landmarks are

constantly shifting. Another cost that also has to be

factored in is the time for transition. In setting used in

the paper, the robot has a mechanical pan tilt which

has to be rotated sometimes to observe a point and

this transition time is potentially wasted opportunity

time for doing measurements and sharpening our

beliefs. Factoring in all this, the paper proposes the

following technique for choosing the next point to

observe

∗ Calculate the transition time required for mechan-

ically changing the fixation point for each of the

feature point from the present robot state. The

paper calls this saccade time. Each measurement

is approximated to be of 200 ms. This saccade

time is divided by this average measurement time

to give an estimate of the measurement that is

opportunistically lost in the transition. Lets call

this Ni for each feature.

∗ Calculate Nmax which is the max of all Ni

∗ For each feature i, calculate the Vs after making

Nmax + 1 steps by performing an immediate

saccade. This means that the first Ni steps will

be lost in the saccade transition and the remaining

Nmax−Ni+1 steps will be a predicted measure-

ment update re-observing the same point again

and again.

∗ After doing this for every feature point, we choose

that saccade which lead to the lowest Vmax

This procedure is the same as maximizing our infor-

mation gain by observing the highest variance feature

point but this factors in time also. Though this is

not the exact optimal solution from a information

theoretic standpoint, this is a very near optimal

thing to do. The algorithm also maintains map by

inserting and deleting landmarks. The heuristic for

maintaining points is simple. A landmark point is

inserted when there is a sparsity of landmark in the

current view of the camera. Based on the observed

position of the landmark, a prediction is made about

a region of robot movement throughout which the

landmark should be visible for it to be considered a

good tracking point. Based on their empirical results,

this roughly turned out to be 45 degree changes

in viewpoint during a robot movement. If a point

doesn’t meet this requirement it is killed. Thus this

algorithm is very liberal in its insertion policy and

by having a strong criteria for maintaining a point,

a natural selection evolves similar to survival of the

fittest strategy.

XI. USE OF DEEP LEARNING IN SLAM SYSTEM

Deep learning based methods have penetrated com-

puter vision and have showed considerate improve-

ments in performance above state of the art methods

for several problems. But Visual SLAM is one area

where pure deep learning methods fail to match the

performance of classical methods. However, some

papers have shown that integrating deep learning in

a meaningful way with existing classical methods

could provide good performance in this filed. [50]

showed that a monocular system could beat state of

art stereo SLAM system by including deep learning

in its work flow. The paper uses stack net, whose

architecture is shown below

Fig. 24: Over view of stacknet architecture

This network is called stacknet since it has two

networks stacked one on top of the other. The first

sub-network, which is called the simple net is a

encoder-decoder architecture with a ResNet-50 based

encoder and skip connections between encoder and

decoder. Given an image, the network predicts 4

pairs of disparity images- the left and right dis-

parity images are produced at 3 different scales.

The residual network predicts a residual that should

be added to the disparity map predicted by simple

Net so that higher resolution disparity maps can be

obtained. The inputs to a residual network contain

the prediction and the errors made the simple net.

The 5 inputs fed into the resnet are

∗ I left which is the (left) image of the stereo pair

fed into the network. In inference time, of the al-

gorithm this is just the image from the monocular

camera.

∗ displeftsimple,0 is the left disparity image predicted

at the lowest scale

∗ Irightrecons is the reconstructed right image by apply-

ing the right disparity map on the left image

∗ I leftrecons is the reconstructed left image by back-

warping Irightrecons using left disparity map

∗ e1 is the L-1 reconstruction error between I left

and I leftrecons

One key advantage of this system is that it only

requires stereo pairs of images for training and

avoids the expensive LIDAR or depth camera based

data collection process. The loss function used for

training the network is shown below

Ls =αU (LleftU + LrightU) + αS(LleftS + LrightS)+

αlr(Llr
left + Lrightlr) + αsmooth(Lleftsmooth + Lrightsmooth)+

αocc(L
left
occ + Lrightocc)

The various terms in this loss function are ex-

plained as follows. ŁU is the self-supervised loss

the measures the quality of the reconstruction. This

loss term checks how consistent is the left and

right image under the given stereo image for the

predicted depth map.ŁS is the supervised loss that

measures the deviation of the predicted depth from

the ground truth depth. Ground is generated for a

few points using the static stereo, with which the

data is collected and it is for these few spare points

that this loss function imposes a constraint. Lleftlr

verifies one image along with its corresponding dis-

parity produces the corresponding stereo pair (ie., left

image with disparity produces right and right image

with disparity produces left). Lsmooth constraints the

depth predictions to be locally smooth. The effect of

Lsmooth is that the depth maps are smoothened even

during transition from foreground to background and

vice-versa. This term penalizes the absolute sum

of disparities which avoids this problem of over

smoothing at object boundaries.

Eventually, once the network is trained, it will prod-

uct a disparity map for the given image as per the

trained stereo baseline setting. One straight forward

way to use this information would be to use it in

initialized depth when a frame or structure is detected

for the first time. This overcomes the well known

scaling issue in monocular systems and prevents

scale drift in the system. But the paper goes beyond

this straight forward idea and models a virtual stereo

image. The idea is to use the network to generate the

disparity image. Now a right image corresponding to

the same view under the stereo setting with which

the network was trained was trained in. Now this

virtual image is treated as if this were a real stereo

image and the whole bundle adjustment optimization

is carried very similar to [?] but with one subtle

change. Since the prediction from the network will

turn to noisy, the optimization is not applied on all

of pixel but only on a subset of pixels. In particular,

elr =
∣∣∣DL(p)−DR(p

′
)a
∣∣∣

just reprsents the difference in disparity estimates

produced by the left and right images. If elr > 1,

then pixels are not selected for all the other pixels

for which the criterion is satisfied. Finally the cost

function to be optimized is very similar to Stereo

DSO. Since, we have already discussed in detail

about the stereo DSO cost function, we directly jump

to the final formulation here

Ephoto := Σi∈FΣp∈Pi
λE+p

i + Σj∈obspEp
ij

This cost function is nothing but the photometric

erros between points observed in frames in the

temporal stereo and our virtual static stereo. For each

frame i and for every key point in the frame, we cal-

culate the photometric reprojection error between the

image and its corresponding stero image generated

by the deep network to simulate a virtual stereo. This

is indicated by the cost function E+p
i . Similarly, for

every frame i and every key point p in the frame, its

photometric reprojection error is minized in all the

other frames that key point was observed. The term λ

represents the weighting to trust between static stereo

and temporal stereo. Back at the time of publication,

this method achieved the top results in various stereo

SLAM benchmarks.

It worth discussing how neural network are trained

to predict depth. Prior to the work of [50], several

network architectures were proposed to predict the

depth from a mono-ocular image. The ground truth

for them were collected using various means like

LIDAR and depth sensor. [24] proposed an easy

mechanism to train such network with stereo pairs.

The data for training just consists of a stero pair of

image and this constitutes a self-supervised training.

The architecture of this network is shown below

This is much simpler version of the depth prediction

network used in [50] and simply enforces a left right

disparity consistency in addition to two other losses.

There are three loss functions that help in training

the network to state of the art results. The losses are

Cap, which is the appearance cost which penalizes

dissimilarity between image reconstructions, Cds

which promotes smooths in disparity map prediction

Fig. 25: Over view of network Architecture

and finally crl, which is the left right consistency

and enforces the disparity maps generated for both

images of the stereo pair to be consistent i.e., if the

both input images are rectified, the per pixel disparity

predicted for the right image should produce the

left image and the per-pixel disparity predicted for

the left image should give the right image if the

disparities are applied. Once we have disparities, we

can get the depth trivially from the system as given

below d̂ = bf/d where d̂ is the depth predicted for

a pixel, f is the focal length and b is the baseline

distance.

End to end deep learning methods are exist for

SLAM problems but they perform very poorly. [51]

was one of the system to propose to deep learning

model for predicting both depth and ego-motion. A

simplified block diagram of the system is shown

below

The images are fed through a depth prediction net-

work which predicts the depth for all pixels. The

depth is fed to the next image in the sequence and

this combination of depth map and next image is

Fig. 26: An end to end deep learning based methods for SLAM

fed through a pose prediction network. The key sight

in this paper is the formulation of cost function to

make training this network feasible. By using the

depth image, the previous image is back projected to

create the 3D point cloud and this point cloud is then

reprojected into the camera frame in the predicted

pose. A photometeric loss measuring the difference

between the projected image and the actual image

is the main mechanism for training this network.

This loss is called view synthesis loss and can be

mathematically as follows

Lvs = ΣsΣp

∣∣∣It(p)− Îs(p)∣∣∣
Let ¡I1, I2, ...IN denote each image in image se-

quence given through the video. Let It be the target

image to which all the other image will be projected

to for checking photo consistency for the depth and

the pose estimated. This means that s in Is can

take any value between 0 and N but s!=t. The view

synthesis cost function just takes every image in

the sequence and uses its depth map to find the

projection of the point cloud to the target view to

find the photometric error. This view synthesis loss

is applied across different scales of the depth map

and few other terms are added to the loss function

to account for smoothness of depth maps and to

overcome modeling limitations. Putting everything

together, the final loss function for training the

network becomes

Lfinal = ΣLlvs + λsL
l
smooth + λcΣsLreg(Ê

l
s)

Here, l loops over different image scales and s

loops over different source images. s and λc stands

for relative weighting between different terms. As

explained earlier, the smoothness terms just imposes

a smoothness in depth prediction in the depth map

generated by network and regularization term is

added to overcome modelling limitation. There are

scenarios where the model is not designed to handle

like moving objects, non-rigid objects in scence. This

is eliminated by using explainability mask where

the network can choose to ignore parts of image

in computation to avoid these problems. A quick

peek into the network is shown below The first few

convolutional layers are shared by all three branches

depth prediction, pose prediction and explainability

mask. It must be noted that all of these branches

can be independently trained or tested by setting

lambda value. Choosing lambda values to be zero

cuts off that part of the branch. The paper goes

on to show that the model exhibits comparable

performance to ORB slam but the system is tested

only by running a 5 image sequence. It is understand

that the system will start to perform poorly thereafter

due to accumulated drift. Since there is no scope

for loop closure frameworks like these where end

to end deep learning is performed, these methods to

this day cannot compete with classical techniques. If

deep learning has a scope in SLAM, its in a hybrid

approaches that utilize deep learning predictions in

SLAM classical optimization pipelines like [50]

XII. FAST SLAM

Among the literature of probabilistic filters, one

approach that has garnered widespread attention for

is FAST SLAM (FACTORISED SLAM) proposed

in [34]. The key insight in building the algorithm

is to factorize the joint probability distribution of

locations and map points into two separate distri-

butions one for modeling the distribution of robot

states and the other for modeling the conditional

distribution of map points given the robot state. Con-

ditional independence is further assummed among

different landmark points to simply the structure

and reduce the computation overload. An efficient

tree data structure is further proposed to optimize

computations.

p(st, θ
∣∣zt, ut, nt) = p(st|zt, ut, nt)πkp(θk

∣∣st, zt, ut, nt)
Here s denotes the robot states and st denotes

all sates till t (s1, s2....st, hence the entire robot

trajectory till now. zt indicates all measurements

made till time step t, ut refers to all controls applied

till time t. nt denotes the indices of all landmarks

observed till the current time step. This signifies the

correspondence problem in matching landmarks. By

having an estimate of nk at time step k, we mean

that we have an internal estimate which landmark

was observed. Another key assumption that has been

very subtly stated in the above formulation is the

landmarks are conditionally independent i.e., the

landmark observed at time step k θk is conditionally

independent of the landmark observed at another

time step m θm. After making such a factorisation,

the work is implemented by using a particle filter for

building the state estimate p(st|zt, ut, nt) and a EKF

filter for estimating the conditional distribution of

landmarks given present robot state θk |st, zt, ut, nt .

These modeling choices make this a very powerful

framework to operate since these updates can be

very fast. First, the use of particle filters for state

estimation doesn’t impose too much computation

burden since the state is only a 3 DoF system in

case of a mobile robot or 6 DoF system in case

of flying robots like quadcoptor. In other words,

it can be stated as justified and intelligent use of

the powerful modeling of particle filters. But land-

marks are built as EKF filters conditioned on the

state of the robot. This means that if there were

K particles in the particle filter estimate of state

and M landmarks totally, there would be a total

of KM EKF filters for estimating landmarks. The

conditional independence of landmark observations

means that the covariance of a landmark is only

a 2 x 2 matrix, which makes computations faster.

In normal probabilistic frameworks, the covariance

estimate becomes a bottleneck. If there were K

landmarks, we would have K2 elements to update for

every iteration and hence the complexity is O(n2),

meaning normal probabilistic filters are quadratic in

terms of the number of landmarks. But due to the

2 * 2 covariance in FAST SLAM, the algorithm is

only linear in the number of landmarks. Thus the

complexity of running one step should be O(NK)

where N is the number of particles and K is the

number of landmarks. This the naive implementation

and the paper goes on to show how this can be done

in O(N log2K). The key insight to build this solution

is that when the robot transitions to a new state

St from an old state St−1, and makes a landmark

observation θt which associated with the index nk,

only the EKF estimation of that landmark should

change and all the other landmarks can remain the

same. To state this idea concisely, when the robot

changes to a new state St from St−1, there are only

two things that change

∗ The new St will poses a different value than the

previous state estimate st−1

∗ The gaussian with index index nt should be up-

dated since it was the landmark that was observed

All the other gaussians will remain the same. Instead

of copying all landmarks from the previous particle

to the new particle naively, we could organize all

gaussians corresponding to all landmarks in binary

tree as shown below

It must be noted that in the data structure above

all leaves nodes corresponds to a landmark estimate

and that we can access any landmark in O(log2K)

where K is the number of landmarks (the number of

leaves in the tree). When a new particle is created

corresponding to a state transition, an incomplete tree

Fig. 27: A binary search tree data structure for storing the
landmark estimates

is first created and only the gaussian index k which

was observed is stored in the tree (In the example

shown above k=3). But all the other tree nodes are

just completed by copying the corresponding node

pointers from the old tree. In this way, the tree can

be constructed in O(log2K). Since such an update

needs to carried for each particle, a single update

step can take O(Nlog2K), where N is the number of

particles.Using this approaches, the authors showed

that they can track as many as 50,000 particles.

One of the problems with FAST slam is the well

known problem with particle filters - particle depriva-

tion and this was handled in the next version of FAST

SLAM [35] This is especially true when having a

very noisy motion model or prediction step. Since the

measurements are primarily accounted through the

resampling process, many of the particles might get

killed due to the noisy motion model. If the gaussian

co-variance of associated position is high but we

have a very peaked distribution in measurements, the

resampling just kills many particles and this results in

particle deprivation, when a single particle or a few

particle dominates the whole distribution and hence,

destroys the point of having a particle filter, which is

to represent multiple hypothesis. This work proposes

a framework to compute P (st|st−1,[m], ut, zt, nt).

The key difference in the above equation is the

addition of zt into the state estimation. This therefore

leads to better results. Since we like to estimate st

by incorporating the most recent measurements, it

makes sense to factor in our observed landmarks into

our calculation.

p(st|st−1,[m], ut, zt, nt)

= η[m]

∫
p(zt|θnt

, st, nt)p(θnt
|st−1,[m], zt−1, nt−1)dθnt

p(st|st−1, ut)

The above equation allows us to factorize what we

need to estimate into the just the product of two

well known terms: the measurement probability and

the state transition or motion model probability.

The only difference here is that the measurement

probability is marginalized over the distribution

describing the current landmark being observed. It

must be noted here that the measurement model

can involve a non-linear function in its more

general version and hence, the paper goes on

local linear approximation to compute the term∫
p(zt|θnt , st, nt)p(θnt |st−1,[m], zt−1, nt−1)dθnt

This allows us to estimate our particle distribution by

factoring in both measurement and state transition.

One final step is the importance weighting. It can

be argued that the whole purpose of the mehtod

was to remove this importance weighting from the

system but in the process of the doing so, we are

not able to accurately estimate the distribution. The

root cause of why this occurs is the normalizer

η[m] used in the estimation equations which turns

out to be different for different particles. Hence,

a reweighting process is undertaken to negate this

effect and thus, we have a better distribution of

particles which incorporates measurements better

into the next state particles prediction than what

was proposed in the original FAST SLAM.

XIII. A BRIEF LOOK AT SOME OTHER WELL

KNOWN SLAM SYSTEMS

A. PTAM:

[29] proposed to organize the computations involved

in SLAM into two parallel threads - a tracking and

a mapping thread. This kind of splitting allows the

system to use the more expensive bundle adjustment

techniques for camera pose estimation and 3D recon-

struction, which is not typically used due to real time

constraints. The work can be summarised as follows

∗ Tracking and mapping are initialized in parallel

threads

∗ The tracking thread estimates the camera pose

for every new key frame based on a subset of

common points between the new key frame and

the previous key frames. This is done first by

coarse calculation over a broad search space using

a few map points (about 50). Once a coarse

estimate is obtained, a finer estimate of the pose is

obtained by doing a search over a narrow search

space using a lot more points (about 1000’s of

points).

∗ The mapping thread then makes the map more

dense by projecting common points visible in the

camera views which were not constructed by the

tracking thread.

∗ The initial mapping when the camera starts up is

obtained using a stereo pair.

∗ New points between consecutive frames are cal-

culated using epi polar search

B. kimera

A team from MIT spark lab CoStar won the DARPA

challange this year and one of the most recent papers

from them [43](to be published in ICRA 2020) was

analyzed to understand the techniques they have

integrated to make this happen. Their work Kimera

is open sourced as a framework. A brief overview

of the whole system is given below in the following

block diagram

Fig. 28: A brief overview of kimera system

At its core, Kimera is stereo inertial system. A VIO

system that uses stereo and inertial sensors produces

a 2D mesh and a VIO back end optimises the back-

end, produces the 3D poses of the camera. The stereo

thread process the stereo image pair and produces a

dense depth map. A pose graph optimization is used

to find the optimal camera poses for the observed

measurements. Then the poses and the depth are

fused together to create a volumetric reconstruction

(A voxel based TSDF). This reconstruction is also

fused with semantic information information from a

deep neural network to produce a metric-semantic

dense map. Depth information is integrated into the

2D meshes to construct a 3D Mesh. A per frame 3D

mesh is generated and another module integrates the

3D Meshes across frames to generate multi-frame

mesh. The per frame and multi-frame meshes are

very useful for robot navigation while the metric-

semantic map is useful scene understanding and

promoting robot interaction. A separate thread also

estimates the global trajectory by using camera poses

and detecting loop closure. A DBoW system is used

for detecting loop closures.

A good slam solution will consider the whole of

trajectory of the camera for both map building and

pose estimation and this is the actual objective that

reflected in the bundle adjustment cost function.

C. Semantic SLAM / Object level SLAM:

One promising research direction that has gained

attraction in the recent years is the synthesis and

utilization of semantic information in SLAM system.

[44] is one such work which operates at object level.

A concise overview of the system is shown below

Fig. 29: Object SLAM

This system fully runs on GPU and runs at the object

level. Objects are detected and placed into the map

and these object serve as features for loop closure or

camera pose refinement in the system. The system

builds on the premise of a known object stored in

a database. Each object is carefully scanned using

Kinect and manually segmented. The objects are de-

scribed by all point pair features, which describes the

relative angles and distance between all points. These

features are discretized and placed into Hash table.

Newly detected objected are matched against the

objects in the dataset to see if a match exists. These

features cast vote for the object pose in a style that

is similar to generalized Hough transform. Since the

objects are constrained to be placed on the ground,

the voting happens in the 3 DoF of x y positions and

the yaw angle. Since we known a rough initial guess

to x y positions of the object, the algorithm doesn’t

have to search brute force across the entire space but

only in a known local space. The paper discusses ef-

ficient GPU implementation that makes this feasible

in a very short time. It must be noted that objection

segmentation is an easier problem here since we have

the depth information and segmentation in 3D space

is essentially a connected component analysis in 3D

space. But this hough transform like search only

leads to very coarse solutions and hence, finally the

pose of the object is refined by ICP that uses point

to plane metric. This is slightly different to the ICP

algorithms that use a point to point distance. In a

ICP that uses point to plane distance, the object is to

minimize the distance between a point in the source

surface to the tangent plane located in the destination

surface at the point of correspondence. This metric

is superior and gives better alignment results. Once

the object is localize, ICP is used again, this time to

localise the camera pose assuming the world to be

static. The paper proposes to use an active search

technique for localising object. The active search

technique at its core, is about chanelling the search

towards unexplored or unknown map spaces. A mask

is generated in pixel space corresponding to those

depth maps which are yet to be associated with

an object and an object matching is carried out in

these regions to efficiently search for new object.

The whole system is constructed as a pose graph

optimization problem where the object serve as the

reference measurement landmark and the camera

poses and the map points are optimized through a

Bundle adjustment cost function. The system also

has relocalization capabilities. When the system is

lost, it starts mapping again and when it finds at least

3 objects, the new graph is matched to the existing

graph to find the actual orientation of the camera.

D. SLAM for driver less CARS:

[42] analyzed the state of SLAM to be used in Driver

less cars back in 2012. Some of the recommendations

from the work were the need to have a topological

maps for longer distance and a metric representation

for shorter/local distances. This comes in light of

the fact that self-driving cars need to keep tracks

of 1000s kilometers and it simply wouldn’t possible

to estimate errors over such large maps and hence

a map in which places which are far apart are

topologically connected with no notion of metric

distance could be very useful while at the same

time metric distance based graph represented can be

used for refining pose and map in the local scale.

This is step toward life-long SLAM, where all cars

could potentially collect data, share with each other

and optimize it for navigation. The more expensive

features that we use, the better the results in terms

of accuracy. A planar feature though is more costly

to estimate gives better results than a corner based

feature at the expense of higher cost in computation.

Therefore, point based features are normally used

due to this tradeoff. Marginalization or Windowed

optimization techniques provide a practical tradeoff

to storage vs accuracy tradeoff. But it has to be

mentioned that these system typically don’t reach

the accuracy that global estimation techniques reach.

But global estimation techniques slow down after

accumulating a lot of key frames and points. There-

fore, this is also a place where a tradeoff is made

depending on application.

XIV. SUMMARY AND COMPARISON

SLAM as an area is very broad and there are a

lot of competing methodologies and sensor suites.

What is the best SLAM method often depends on

the task on hand. As SLAM continues to build on,

there seems to emerging split between the AR and

the robotics community. They are driven by two

different objectives and hence, tend to stress more

on slightly areas. Some of the primary points of

distinction between the two communities are

∗ Information management: Information manage-

ment seems to be a big concern for robotics

community while the AR community is not too

bothered about it. This is understandable since

AR applications want to map an indoor room

at the maximum. This is exactly the opposite

in the robotics community now, where ideas are

springing up about topological maps since there

is need to maintain a map for 100s or 1000s of

kilometers in case of self-driving cars.

∗ Hardware: The robotics community is slowly

moving away from GPU and focuses more on

SLAM algorithms that can be run on board in

realtime. This is understandable from the demands

of the robotics system. A GPU imposes a lot

of stress on the robot design since it requires a

cooling system and drains a lot of power. One

subsection of robotics, that is very sensitive to

payload being carried is the quadcoptor group

since the payload carrying capacity is not as

much of other robots like mobile robots. The AR

community driven, which is not driven by these

factors is deeply rooted in GPU.

∗ Surface representation / Density of Maps:

Robotics community is not concerned of the qual-

ity of the reconstructed surface since the maps are

a tool for robot motion planning, navigation or

interaction whereas with a AR system, the qual-

ity of reconstruction is of paramount importance

since its one of the most important factors in user

experience. Robotics, community in fact, is happy

to operate with a few feature points instead of

map and the act of representing reconstruction as

surfaces or meshes is relatively not deeply looked

in robotics. But there is a diverging interest in

the density of the area mapped in the robotics

community. For a robotics navigation problem, a

dense map building using SLAM is an overkill

since it can be done with sparser maps more

efficiently and reliably. But there are robotics

(a) Ground truth trajectory
of a map

(b) A trajectory estimated
by monocular system

applications where mapping becomes important as

well, where dense maps become a necessity.

We have looked at different sensor suites that can be

used for visual SLAM. It is good to remember what

are the characterisitcs and challenging when using

each of them

∗ Monocular SLAM: While monocular SLAM is

the well studied problem that purely relies on

temporal stereo for structure and motion recovery,

it inevitably suffers from scale drift.

The figure above shows an illustrative example

for this, where the geometry of the reconstruction

seems okay but the scale keeps shrinking as the

trajectory progress ultimately making the map

useless unless there is some correction from the

loop closure to correct for the scale drift. This the

reason why monocular systems often have a very

specific bootstrapping sequence so that the scale

is initialized to the right value but this does not

eliminate the problem completely as drift can still

occur. It is quite interesting that one of the works

by Daniel Cremer [50] was able to exploit deep

learning to simulate a virutal stereo that ended up

beating many of the state of the art algorithms in a

stereo system. With the infusion of deep learning,

it will be interesting to see how the work on

Monocular SLAM evolves.

∗ Stereo SLAM: Stereo slams avoid the scale drift-

ing by finding out the depth of a few points using

the static stereo constraints. But there is no free

lunch as this comes with increased computation

need though the cost of an additional camera is

no longer a concern. It can also be noted that this

system doesn’t require any kind of bootstrapping

to begin with since the depth of the points can be

estimated directly.

∗ Visual Inertial SLAM: The IMU eliminate sev-

eral problem in a slam system with its rich in-

formation. Firstly the scale drift is avoided in

the inertial system as well due to infusion of

motion estimate predicted from the IMU. But it

has to be noted that this system also has to go

through an initial bootstrapping sequence similar

to Monocular system since the IMU parameters

are initially uncalibrated at the start of the op-

eration and the only way to initialize a point

with a known depth is to follow the standard 8

point or 5 point algorithm. One more advantage of

using IMU is that the pose optimization essentially

reduces to a 4 DoF optimization problem since

there is no drift in the roll and pitch angles.

But its advantage is offset by its own sensor

structure since we have to pass in the sensor

noise parameters as optimization parameters. As

per the inference from literature, it can be argued

that the sensor noise characterization is much

simpler optimization problem in a stereo SLAM

or monocular SLAM since those extra 2 DoF

involved in the full bundle adjustment brings in

a lot more parameters to be estimated, two extra

for each trajectory point than a VI system. Thus

on paper, a visual inertial system should be better

than a setero or Monocular system but the IMU

costs are more expensive than a camera.

∗ RGBD: Direct depth measurement is always bet-

ter than inferred depth and also allow for depth

predictions to be available for every pixel in the

image. Thus, RGBD sensor should be better than a

stereo system. But the depth sensor measurements

are only to a very limited range often only a few

meters in the case of Kinect. Thus, there are good

for small indoor applications where objects are

pretty close but for outdoor applications where the

range is much larger, the system fails and stereo

wins in that aspect.

Filtering Vs Optimization: The increasing trend in

the visual SLAM community is to move towards

Optimization based methods. The most agreed upon

method seems to be to estimate a motion only Bundle

adjustment and structure only bundle adjustment

locally and then do a global optimization if that

seems reasonable. But there are works that have

increased the power of filtering based approaches

like fast SLAM [34], which can handle as much as

50,000 landmarks on an average computing platform.

But at the core this debate is the objective of the

work undertaken in question. If robotic navigation is

the objective in question, filtering based approaches

are still a powerful choice. But they fall apart if

the need is to generate dense maps or to do this

navigation over a large area, where the run time

grows quadratically with the number of parameters

in case of normal filters. A fast SLAM can do this

O(nlog2K)

Direct vs feature based methods: Direct methods

appear to be way more superior at first sight but they

have their own shortcomings too. Direct methods

rely very much on photo consistency and small

baseline assumption. This is okay as long as we are

using a high frame rate camera and we are operat-

ing in environments where sudden lighting changes

are unexpected. Though these methods seem to be

showing good results, its still open to discussion if

direct methods can perform as robustly as feature

based methods under varying lighting.

Though it is very difficult to compare different

SLAM algorithms under a unifying framework, a

final analysis on comparison of different SLAM

on three different dataset results is discussed. [2]

compared three SLAM techniques on outdoor natural

images. The objective was to find out how standard

SLAM methods perform in outdoor environment.

The whole testing was carried on a dataset collected

by traveling through a lake on the boat. The algo-

rithms compared by this method are: ORB SLAM2,

LSD-SLAM and DSO. A brief summary of some of

the compiled statistics is shown below

Fig. 31: Visual SLAM Method Comparison

The paper reports that ORB SLAM2 suffer from

initialization problems in natural environments. An-

other important aspect is that the LSD SLAM seems

to prone to a large number of false recoveries. Over-

all on failure modes, DSO seems to fare a lot better

making it the most robust among the three.Another

parameter that was considered for the robustness

quantification was the completion rate

Fig. 32: Completion rates for Visual SLAM

Completion rate refers to the percentage of times

the SLAM system generated the entire loop without

going into a failure mode. It can once again be

seen that DSO had a significantly higher completion

percentage, followed by LSD and then ORB

Fig. 33: Drift accumulated in the system

These velocity profiles don’t have any units. Its just

the initial values that the systems were initialiazed

with during the bootstrapping sequence. These ab-

solute numbers do not hold any meaning on their

own rather they are just used for viewing the drfit

in the system. It can be seen that ORB exhibits the

least amount of drift, where as DSO exhibits a slight

positive drift and LSD has a more positive drift.

Fig. 34: RMSE error for comparing the three algorithms

RMSE is an error metric where the estimated tra-

jectory and the ground truth trajectory are aligned

and a sum over the pair wise distance between each

point in the trajectory is estimated. It can be seen

that LSD and DSO exhibited very low RMSE as

compared to ORB, which exhibited a large error.

Though the exact numbers vaired depending on the

weather conditions on the day, the trend in the data

didn’t change drastically.

An evaluation of the same three alogrithms but in an

indoor setting was carried out by [17]. The results

of the analysis are shown below.

Fig. 35: RMSE error for many indoor algorithms in an indoor
setting

It can be seen that ORB SLAM has a lower RSME

error than LSD SLAM and DSO SLAM, this proving

that ORB is more reliable and robust indoors. An

interesting aspect from the comparison is that ORB

stereo achieves higher error than plain ORB, which

is counter intuitive to what we expect. This indicates

that there is scope for improvement there. It also

highlights that sometimes too much information to

optimise over actually results in degraded perfor-

mance.

Another comparison of LSD slam with ORB slam

was carried out in [16]

Fig. 36: Effect of changing the rectified image size

It can be seen from the figure above that LSD

slam achives higher alignment error with increasing

runs but one thing that can also be noticed is that

LSD slam is unaffected by rectified image size. The

trend of curve nearly remains the same irrepstive of

recitified image size showing that LSD slam is more

robust to change in rectified image sizes

Fig. 37: Dataset motion bias

The paper also analyses the dataset bias on motion

estimation for both methods. Both methods LSD

slam and ORB slam were run through all sequences

both forwards and backwards and both. It can be

seen that ORB slma has varying alignment errors

for different sequences played while LSD slam is

not affected by the direction in which the sequence

is played proving that LSD slam has lesser dataset

bias

XV. CONCLUSION AND FUTURE WORK:

[1] presents detailed survey on slam and lists some

of the open challenges in the community. Some of

the challenges listed in the paper are

– Robustness: Fail safe SLAM and recovery Many

of the SLAM techniques in action today are very

susceptible to outliers. This is mainly due to the fact

that most of the SLAM solvers are iterative solvers

and they rely on the key idea od linearization around

a key point, which fails in the case of an outlier point.

An ideal slam should be fail safe and faile-aware

i.e., the system should be aware of imminent failure

modes and initiate a recovery rather than entering

into irrecoverable failure modes.

– Robustness: Metric relocalization: Present loop

closure techniques pure based on visual features

cannot detect all loop closures reliably across day

and night and across different seasons.

– Robustness: Dynamic and deformable maps: Most

SLAM systems are built on the key idea of a

static scene and rigid body assumption about objects.

SLAM systems need to go beyond these assumptions

by considering dynamic scenes and soft deformable

objects.

– Scalability: Map representation: For a long term

exploration, our present methods data representation

such as point clouds or meshes won’t scale up. We

need to come up with a compact and compressed

map representation for long term operation

– Scalability: Learning, forgetting and remember-

ing: Another unexplored question is to decide when

an information is outdated and when a information

can be saved and reloaded. Present approaches just

stores all data and marginisalise out data when the

allocated memory is filled up.

– Scalability:Disributed mapping: Outlier rejections

become even more difficult to handle in distributed

system since the data is measured in different robot

frames before fusing in into a single frame. The

effect of outliers is catastrophic but this has not been

cleanly solved.

– Metric map models:semantic models A compact

way to store map would be to derive high level

semantics rather than using points and surface. But

not a lot has been invested into the semantic under-

standing of structures within a SLAM system.

– Metric map models:Optimal representation While

we do have a lot of techniques to formulate a geom-

etry we desire, what is not well understood is the

comparison of all these methods as to which is the

most optimal representation of given the geometry.

– Metric map models: Adaptive representations

Rather than forcing the robot to use a particular

representation of a map, a better strategy would be

let the robot adaptively figure out the right represen-

tation based on its constraints.

– Theoretical tools: Generality, gaurantees and ver-

ification Apart from pose graph optimization, guar-

anteed theoretical results on global solutions and

verification techniques have not been extended to

factor graphs. Most theoretical models assume the

measurement model to be isotrpic. It will be more

pose if this is extended to more arbitrary noise

models.

– Active SLAM: Fast prediction of future states:

Active sLAM is the process of making decision on a

robotic motion to maximize out objective of building

a clean map. In order for this to happen, we must

make a fast prediction about the future state, which

seems too expensive for today’s systems.

– Active SLAM: When to stop it? A clear strategy or

theoretical estimate on when is the right time to stop

doing active SLAM and start doing normal SLAM

is still a relatively an unstudied problem.

The future opens up more challenges for the SLAM

community. With the growth of SLAM, SLAM is

entering a positive feedback cycle where its applica-

tions are demanding more than what its presently ca-

pable of, which in turn starts driving bigger innova-

tion. Self-driving cars is an example of such a system

which has started demanding a long term mapping

solution from the SLAM community. Moreover, the

growing maturity of sensors and the introduction of

new sensors brings new promise. A few new sensing

modalities that we left undiscussed in this paper are

event-based camera and light field cameras. These

sensory innovations coupled with active algorithmic

development in SLAM will keep the SLAM com-

munity vibrant in research activity for the years to

come.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,

J. Neira, I. Reid, and J.J. Leonard. Past, present, and

future of simultaneous localization and mapping: Towards

the robust-perception age. 2016.

[2] G. Chahine and C. Pradalier. Survey of monocular slam al-

gorithms in natural environments. In 2018 15th Conference

on Computer and Robot Vision (CRV), pages 345–352, May

2018.

[3] J. Civera, A. J. Davison, and J. M. M. Montiel. Inverse depth

parametrization for monocular slam. IEEE Transactions on

Robotics, 24(5):932–945, Oct 2008.

[4] Laura A. Clemente, Andrew J. Davison, Ian D. Reid, Jos

Neira, and Juan D. Tards. Mapping large loops with a single

hand-held camera. In IN PROC. ROBOTICS: SCI. SYST,

2007.

[5] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta

Willamowski, and Cdric Bray. Visual categorization with

bags of keypoints. In In Workshop on Statistical Learning

in Computer Vision, ECCV, pages 1–22, 2004.

[6] M. Cummins and P. Newman. Accelerated appearance-only

slam. In 2008 IEEE International Conference on Robotics

and Automation, pages 1828–1833, May 2008.

[7] M. Cummins and P. Newman. Accelerated appearance-only

slam. In 2008 IEEE International Conference on Robotics

and Automation, pages 1828–1833, May 2008.

[8] Brian Curless and Brian Curless. A volumetric method for

building complex models from range images. 1996.

[9] Davison. Real-time simultaneous localisation and mapping

with a single camera. In Proceedings Ninth IEEE Inter-

national Conference on Computer Vision, pages 1403–1410

vol.2, Oct 2003.

[10] A. J. Davison. Active search for real-time vision. In

Tenth IEEE International Conference on Computer Vision

(ICCV’05) Volume 1, volume 1, pages 66–73 Vol. 1, Oct

2005.

[11] A. J. Davison and D. W. Murray. Simultaneous localization

and map-building using active vision. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 24(7):865–880,

July 2002.

[12] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and

Olivier Stasse. Monoslam: Real-time single camera slam.

IEEE Trans. Pattern Analysis and Machine Intelligence,

29:2007, 2007.

[13] Frank Dellaert and Michael Kaess. Square root sam:

Simultaneous localization and mapping via square root

information smoothing. I. J. Robotics Res., 25(12):1181–

1203, 2006.

[14] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.

In arXiv:1607.02565, July 2016.

[15] Jakob Engel, Thomas Schoeps, and Daniel Cremers. Lsd-

slam: large-scale direct monocular slam. volume 8690,

pages 1–16, 09 2014.

[16] Jakob Engel, Vladyslav Usenko, and Daniel Cremers. A

photometrically calibrated benchmark for monocular visual

odometry. 07 2016.

[17] Maksim Filipenko and Ilya Afanasyev. Comparison of vari-

ous slam systems for mobile robot in an indoor environment.

09 2018.

[18] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-

direct monocular visual odometry. In 2014 IEEE Inter-

national Conference on Robotics and Automation (ICRA),

pages 15–22, May 2014.

[19] Christian Forster, Luca Carlone, Frank Dellaert, and Davide

Scaramuzza. Imu preintegration on manifold for efficient

visual-inertial maximum-a-posteriori estimation. In Lydia E.

Kavraki, David Hsu, and Jonas Buchli, editors, Robotics:

Science and Systems, 2015.

[20] Christian Forster, Luca Carlone, Frank Dellaert, and Da-

vide Scaramuzza. On-manifold preintegration for real-time

visual-inertial odometry. 2017.

[21] Jorge Fuentes-Pacheco, Jose Ascencio, and J. Rendon-

Mancha. Visual simultaneous localization and mapping: A

survey. Artificial Intelligence Review, 43, 11 2015.

[22] Dorian Galvez-Lopez and Juan Tardos. Bags of bi-

nary words for fast place recognition in image sequences.

Robotics, IEEE Transactions on, 28:1188–1197, 10 2012.

[23] X. Gao, R. Wang, N. Demmel, and D. Cremers. Ldso: Direct

sparse odometry with loop closure. In iros, October 2018.

[24] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow.

Unsupervised monocular depth estimation with left-right

consistency. In CVPR, 2017.

[25] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard.

A tutorial on graph-based SLAM. IEEE Transactions

on Intelligent Transportation Systems Magazine, 2:31–43,

2010.

[26] Shahram Izadi, David Kim, Otmar Hilliges, David

Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie

Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,

and Andrew Fitzgibbon. Kinectfusion: Real-time 3d recon-

struction and interaction using a moving depth camera. In

UIST ’11 Proceedings of the 24th annual ACM symposium

on User interface software and technology, pages 559–568.

ACM, October 2011.

[27] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard,

and F. Dellaert. iSAM2: Incremental smoothing and map-

ping using the Bayes tree. Intl. J. of Robotics Research,

IJRR, 31(2):216–235, February 2012.

[28] Michael Kaess, Ananth Ranganathan, and Frank Dellaert.

isam: Incremental smoothing and mapping. Robotics, IEEE

Transactions on, 24:1365 – 1378, 01 2009.

[29] G. Klein and D. Murray. Parallel tracking and mapping

for small ar workspaces. In 2007 6th IEEE and ACM

International Symposium on Mixed and Augmented Reality,

pages 225–234, Nov 2007.

[30] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and

W. Burgard. g2o: A general framework for graph optimiza-

tion. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), pages 3607–3613,

Shanghai, China, May 2011.

[31] Vincent Lepetit and Pascal Fua. Keypoint recognition using

randomized trees. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28:2006, 2006.

[32] H. C. Longuet-Higgins. A computer algorithm for recon-

structing a scene from two projections. , 293:133–135, Sep

1981.

[33] Nicholas Molton, Andrew Davison, and Ian Reid. Locally

planar patch features for real-time structure from motion.

01 2004.

[34] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and

Ben Wegbreit. Fastslam: A factored solution to the simulta-

neous localization and mapping problem. In In Proceedings

of the AAAI National Conference on Artificial Intelligence,

pages 593–598. AAAI, 2002.

[35] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and

Ben Wegbreit. Fastslam 2.0: An improved particle filtering

algorithm for simultaneous localization and mapping that

provably converges. In In Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence

(IJCAI), Acapulco, Mexico, 2003.

[36] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint

kalman filter for vision-aided inertial navigation. In Pro-

ceedings 2007 IEEE International Conference on Robotics

and Automation, pages 3565–3572, April 2007.

[37] R. Mur-Artal and J. D. Tards. Orb-slam2: An open-source

slam system for monocular, stereo, and rgb-d cameras. IEEE

Transactions on Robotics, 33(5):1255–1262, Oct 2017.

[38] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tards.

Orb-slam: a versatile and accurate monocular slam system.

CoRR, abs/1502.00956, 2015.

[39] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,

David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie

Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinect-

fusion: Real-time dense surface mapping and tracking. In

IEEE ISMAR. IEEE, October 2011.

[40] T. Qin, P. Li, and S. Shen. Vins-mono: A robust and versatile

monocular visual-inertial state estimator. IEEE Transactions

on Robotics, 34(4):1004–1020, Aug 2018.

[41] Tong Qin, Jie Pan, Shaozu Cao, and Shaojie Shen. A

general optimization-based framework for local odometry

estimation with multiple sensors, 2019.

[42] German Ros, Daniel Ponsa, and Antonio M. Lopez. Visual

slam for driverless cars: A brief survey. In in IEEE

Workshop on Navigation, Perception, Accurate Positioning

and Mapping for Int. Veh, 2012.

[43] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera:

an open-source library for real-time metric-semantic

localization and mapping. In IEEE Intl. Conf. on

Robotics and Automation (ICRA), 2020. arXiv preprint

arXiv: 1910.02490, https://www.youtube.com/watch?v=-

5XxXRABXJsfeature=youtu.be, https://github.com/MIT-

SPARK/Kimera, https://arxiv.org/pdf/1910.02490.pdf.

[44] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J.

Kelly, and A. J. Davison. Slam++: Simultaneous localisa-

tion and mapping at the level of objects. In 2013 IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1352–1359, June 2013.

[45] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson,

Sikang Liu, Yash Mulgaonkar, Camillo Taylor, and Vijay

Kumar. Robust stereo visual inertial odometry for fast

autonomous flight. IEEE Robotics and Automation Letters,

PP, 11 2017.

[46] S. Thrun and M. Montemerlo. The graphslam algorithm

with applications to large-scale mapping of urban structures.

In International Journal on Robotics Research, pages 403–

430, 2005.

[47] Kanade Takeo Tomasi Carlo. Shape and motion from

image streams under orthography: a factorization method.

International Journal of Computer Vision, 9:137–154, 11

1992.

[48] R. Wang, M. Schwörer, and D. Cremers. Stereo dso: Large-

scale direct sparse visual odometry with stereo cameras.

In International Conference on Computer Vision (ICCV),

Venice, Italy, October 2017.

[49] Brian Williams, Mark Cummins, Jos Neira, Paul Newman,

Ian Reid, and Juan Tards. A comparison of loop closing

techniques in monocular slam, 2009.

[50] N. Yang, R. Wang, J. Stueckler, and D. Cremers. Deep vir-

tual stereo odometry: Leveraging deep depth prediction for

monocular direct sparse odometry. In European Conference

on Computer Vision (ECCV), September 2018. accepted as

oral presentation, arXiv 1807.02570.

[51] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Un-

supervised learning of depth and ego-motion from video.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6612–6619, July 2017.

XVI. APPENDIX

