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Day 2

Had Colorful 
Dreams..?



Agenda
Session I

● Linear Regression

● Logistic Regression

● Over / Under Fitting

● SVM

● Other ML Techniques



Linear Classifier

A line should classify the data

But, How do I come up with a Line 
which separates both the classes of 
data optimally?
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2 ML Problems
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Regression Classification
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Let’s Digress into 
Regression



Gradient Descent

● The magnitude of the update is 
proportional to the error term   
(y(i) − h θ (x (i) ))

● If a training example on which 
our prediction nearly matches 
the actual y (i), there is little 
need to change the parameters
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Batch Gradient 
Descent

Stochastic Gradient 
Descent (SGD)



Linear Classifier

A line should classify the data

● Randomly Initialize a Line
● Calculate Error
● Move in a Random Direction
● Recalculate Error
● If Error reduced, move in same 

direction
● Else move in opposite direction
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Parts of an ML 
Algo: ERM
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Inference

● Hypothesis space, the set of possible hypotheses it can 
come up with in order to model the unknown target 
function by formulating the final hypothesis

● An example (linear function)

Learning

X - Training data    Y - Labels     h(θ) = Predicted label

● Cost function => J(θ) = h(θ) - y         [Predicted - Actual]

● Update Rule

Training Set

Learning 
Algorithm (θ)

h Predicted yx



Logistic 
Regression
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The Line can be drawn from the 
learned parameters

θ0 + θ1X1+ θ2X2 = 0

X1 = θ0/θ1 + θ2X2 /θ1



Logistic 
Regression

13

Learning

X - Training data    Y - Labels     h(θ) = Predicted label

● This can be simplified as     hθ(x) =

● Cost function

● Update Rule

Gradient Descent: Starts with some initial value of θ and 
repeatedly performs update

Training Set

Learning 
Algorithm (θ)

h Predicted yx



Overfitting & 
Underfitting

1.
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Overfitting & 
Underfitting

How to Fix

1. Cross Validation
2. Feature selection
3. Regularization
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Regularization

Regularization parameter which 
penalizes higher order θ
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All (Wo)Men must Code
Basic ML Notebook



Problems

Why Logistic Regression does not 
work?
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More intelligent 
classifier

Which of the linear separators is 
optimal?
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Let’s take the Logistic regression 
example

Among A, B and C which data point 
would you confidently classify as Bolt?

If the point is far from the separating 
hyperplane, we may be significantly 
more confident in our predictions

Find a decision boundary that allows 
us to make all CORRECT and 
CONFIDENT predictions

Margins
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SVM
Optimal Margin Classifier

● Examples closest to the 
separator are support vectors.

● Margin ρ of the separator is the 
distance between support vectors

                  r = (WTX + b) / ||W|| 

● Functional Margin 
     γ ˆ (i) = y (i) (wT x + b)
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Nonseparable Data
We learned that SVM is a Linear 
Classifier

Can SVM classify the given data?
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Project data to Higher Dimension
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[x1, x2] = [x1, x2, x1
2+x2

2]



Hyperplane re-projection in 2D 
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Demo
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Just,
● Project the data into higher 

Dimension
● Find Hyperplane
● Re-project the Hyperplane back 

to original dimension

http://www.youtube.com/watch?v=9NrALgHFwTo


Kernel Trick

It is so simple. Is it True?
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Higher Dimensional Projection is 
Expensive

● Impractical for Large Dimensions
● Huge memory and Computation 

are required
● Transformation from N 

dimension to M Dimension is 
O(N2) expensive

We only need Dot Products..! Not the High Dimension Data

K(x, z) = φ(x)T φ(z)

Computationally Faster and No extra memory needed

O(N2) O(N)



SVM

Find the Hyperplane which optimizes 
the Functional and Geometric margin 
iteratively
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Hands-on is Coming..!
IPython Notebook

https://s.users.crestle.com/g8i0a4g4/notebooks/ahws_17/examples/src/07.svm_nuts_bolts.ipynb


Real World Data

In the real world the data may not be 
Linearly separable

How do we classify the data now?
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More Features

If I project the same data into 3D / 4D / 
5D, etc, can I separate the data 
Linearly?

Introduce more features for more 
accurate classification
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ML Advice - Diagnostics
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Try getting more training examples Fixes high Variance

Try a smaller set of features Fixes high Variance

Try a larger set of features Fixes high Bias

Try changing features (e.g, email 
header features)

Fixes high Bias

Run gradient descent for more 
iterations

Fixes optimization algorithm

Try Newton’s method Fixes optimization algorithm

Use a different value for λ Fixes optimization objective

Try using an SVM Fixes optimization objective

High Variance

High Bias

Credits: cs229, Andrew Y. Ng



Rule #1: Plot the Data

Questions to ask:

Is the Algorithm converging?

Are you optimizing the right function?

Is the value for λ is correct?

Is the value for C is correct?

Are initial parameters correct?

ML Advice
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Credits: cs229, Andrew Y. Ng

Error Analysis Ablative Analysis

● Helps to understand how 
much error is attributable 
to each component?

● Helps to identify Poor 
components by which we 
can improve performance

● List down accuracy DROP 
after introducing each 
component.

● Plug in ground-truth for 
each component, and see 
how accuracy changes

● Helps to understand how 
each component in the 
system helps to achieve 
final better accuracy

● Helps to identify the less 
contributing component 
so they can be removed

● List down what is the 
accuracy IMPROVEMENT 
after each level starting 
from the basic model

● Remove one component 
at a time and see how 
accuracy drops



Types of ML

Classification

● Logistic Regression
● Decision Tree
● AdaBoost
● Naive Bayes Classification
● SVM (Support Vector Machine)
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Types of Learning

Supervised: Learning by Labelled Ex 
● Eg. Face Recognition
● Amazingly effective if you have 

labelled examples

Unsupervised: Discovering Patterns
● Eg. Google News - Data 

Clustering
● Useful if you lack labelled data

Reinforcement: Feedback right/wrong
● Eg. Playing chess by winning or 

losing
● Works well in some domains, 

becoming more important

33



Unsupervised 
Learning

K-means Clustering

34
https://www.datascience.com/blog/k-means-clustering

Input Data

K = 2

K = 4



Unsupervised 
Learning

● Clustering
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https://www.datascience.com/blog/k-means-clustering



Reinforcement 
Learning

How does a Human learn?

● Tilt the bike in 0 deg: Goes out 

of Fence

● Tilt it in 90 deg: Loses balance 

and falls down

● Getting these feedback / 

reward, learn how to ride i.e, 

learn the angle
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https://www.datascience.com/blog/k-means-clustering



Reinforcement 
Learning

●

37
https://www.datascience.com/blog/k-means-clustering



Reinforcement 
Learning

●

38
https://www.datascience.com/blog/k-means-clustering

http://www.youtube.com/watch?v=V1eYniJ0Rnk


MOOC for ML
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Courses
● ML: cs229 by Andrew Y. Ng 
● RL: David Silver 
●

Books:

Blogs & Github:
● Scikit-Learn examples
● ML Playground

cs229 is good place to start

Do a lot of assignments

Work on pet projects

Contribute to ML Open source libraries

https://www.youtube.com/watch?v=2pWv7GOvuf0&app=desktop
http://ml-playground.com/


How to Solve this?

We MAY be able to solve this by 
introducing one more feature which 
MAY separate them linearly.

Or I will let SVM project it to higher 
dimension and find hyperplane and 
reproject it back

Do you see any pattern? Any 
mathematical solution?
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Clue..!

Think in MATHEMATICS..!

41



Cartesian -> Polar

r = √ ( x2 + y2 )

θ = tan-1 ( y / x )

42

x

y

r

θ

x

y

r

θ

r

θ

x

y



Cartesian -> Polar

r = √ ( x2 + y2 )

θ = tan-1 ( y / x )

43
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What is Next?

Let the Algorithm Learn these 

● Functions
● Features

ON ITS OWN…!

44

Deep Learning
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Lunch Break
Feed yourselves well to feed the Machines more..!



Day 2 - AN 1 (DL)
What is the limitation of simple Image Processing and why we need intelligent 
systems?
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What we know from Neuroscience
● Layer wise processing
● Hierarchical
● Simple Cells -> Complex Cells
● Closest Analog: IT
● Fovea
● Fusion of other sensory i/p 
● Generative Model of world
● Even V1 gets feedback from
● Feedforward IT ~ CNN 
● (role of feedback)

http://timdettmers.com/2015/07/27/brain-vs-deep-learning-singularity/
47

http://timdettmers.com/2015/07/27/brain-vs-deep-learning-singularity/


Limitation of Traditional ML
● Need to hand engineer features which can take a lot 

of time
● The limitations in its ability to represent complex 

features ( Requires a lot of diligence and intelligence)
● Models developed for one problem cannot be easily 

be utilised for a similar problem

48



Simplest Models

49



Simplest Models
● Perceptron training

Include bias term as the third weight(w3) with its input always set to 1
Step 1:  Initialization: wi = 0, i = 1 to n
For each of the training sample  do steps 2 -4
Step 2:   Compute output by weighted linear combination of inputs
               ( Vi = w1 *x1 + w2 * x2 + 1 * bias)
Step 3:   Find the error ( Error = Anticipated output - predicted output)
Step 4:   Update each weight based on the following 
                  𝜟Wi = Error * э * Xi
                  Wi = Wi + 𝜟Wi
                  Where э is the learning rate and its range is 
                   0 <= э < 1
Step 5: Repeat the procedure until no error results

50

W1
W2

Bias

Vi

X1 X2
1
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Enough Talk..! Let’s Code!!
IPython Notebook

https://s.users.crestle.com/g8i0a4g4/notebooks/ahws_17/examples/src/07.svm_nuts_bolts.ipynb


                                    Perceptron Limitations - Linear separability

● A simple perceptron cannot learn a classifier for a XOR gate
● How to draw a decision boundary in case of a XOR gate? 
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Problem of Linear separability

● Can this kind of perceptron provide solutions to all kinds of data patterns we might encounter in practice? Let’s find 
out

● This is because we don’t have non-linear elements in our network. Hence, this kind of network can only learn linear 
functions of inputs.

● How can we improve the network to learn non-linear functions?
● Key observation - Cannot directly classify data.  Convert the data to a new feature space to classify
● Nonlinearities should be included in the network
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http://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.01&regularizationRate=0&noise=0&networkShape=2,1&seed=0.05904&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.01&regularizationRate=0&noise=0&networkShape=2,1&seed=0.05904&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Sigmoid activation function
● We can include non-linear 

functions in our to improve the 
representational power of the 
network.

● We know how a initial models of 
how neuron fires.

● Can we represent this kind of 
activation as continuous and 
smooth function

54

● The sigmoid function is shown as follows

● Here x is weighted combination of the neuron 
inputs.

● The neuron fires when x >> 0 and does not 
fire when x << 0. The neuron lies in a 
transition state when when x ≈ 0.

● The function is smooth and differentiable



Case of two layers with non-linearities - MLP
- The perceptron revenge

● Convert the inputs into a new feature space where the data points are 
linearly separable

● This necessitates the need at least two neurons with non-linearities. This 
kind of architecture is called Multilayer Perceptron (MLP)

●  The first layer is called input layer, the layer at the last is called output 
layer. The layer / layers in between are called hidden layers

55H1

H2



MLP
● A simple Multilayer network will consist of an input layer, output layer and one 

or more hidden layer in between
● It is not necessary that each hidden layer should contain same number of 

neuron. Each hidden layer usually contains a non-linear activation function

56



But what about training?
● In a single layer perceptron, there was direct interaction between 

input and output, hence we were able to update their weights 
directly based on output and inputs.

● Training becomes a little harder in MLPs, since we there are 
multiple layers of weight.

● We will measure the error committed by the network through an 
objective function ( Just measure the squared difference between 
the anticipated output and predicted output - MSE)

● We will then try to find the minima of the objective function through 
gradient descent

● But how do we update weights of the network based on direction to 
move in gradient descent?

57



MLP - Backpropagation

● Backpropagation provides a way to 
compute the gradient of the error 
function with respect to each of the 
weights in the network.

● This provides a way to update update 
the weights of the network based on 
the error function.

58

Terminologies:-
C - cost function
aj

L- jth neuro
𝛿j

L - error of the jth neuron in the Lth 
layer
bj

l - bias of the jth neuron in the Lth 
layer
wl

jk- weight connecting the jth 
neuron in the Lth layer to kth neuron 
in the L-1th layer



Representational power of MLP
● Can this kind of MLP learn any functions?
● It turns out that this kind of neural network 

with one hidden layer is a universal 
approximator i.e., these neural networks can 
model any continuous function.

● Then why are many hidden layers required?
● It is practically difficult to learn the exact 

values of the parameters in such networks. 
Hence multiple layers make it practically 
possible to exploit the representational 
power of a neural network.
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MLP - Limitations
● Very expensive training process (Too many parameters to learn)
● Not scalable to a larger architecture. The number of neurons increases rapidly 

with the number of neurons in the network.
● Does not converge
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What do Neural Networks Learn?



CNN
● Neurons are arranged in a 3D layer, unlike a MLP, where it is arranged in a 

2D layer
● Each neuron views only a specific portion of the input and shares its 

parameters with many neurons in the same layer
● Encodes properties that are more desirable for images.
● Convolutional neural networks calculate the output from the input by repeated 

applying convolution operation.
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Convolution - signals motivation

63

2D

Continuous case
Discrete case

convolution is a mathematical operation on two functions to produce a third function  giving 
the summation of the pointwise multiplication of the two functions as one of the functions is 
translated throughout

https://en.wikipedia.org/wiki/Operation_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Pointwise


Convolution
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1D 3D

2D



Convolution
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Demo

http://cs231n.github.io/assets/conv-demo/index.html
http://cs231n.github.io/assets/conv-demo/index.html


Convolution by Neurons
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ZERO PADDING - zeros can be added to the feature map to increase the size of 
the feature map. The idea is to keep the size of the feature map the same 
throughout

STRIDES - Number elements that should be skipped in the feature map while 
doing convolution

67

Zero Padding Convolution on a feature map with 
three different strides

Convolution



What does deep 
learning learn?

● MLPs without bias term model 
linear transformation

● MLPs with bias term model 
affine transformation

● The activation functions 
introduces further 
non-linearities

● Deep learning learns a 
transformation of a feature 
space that becomes linearly 
separable in a different 
topological space

● Link - convnetjs

68

Deep Learning

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


    Problem with tanh layer /sigmoid

● The tanh/ sigmoid activation function 
squashes a real number in between zero 
and one

● It involves expensive operations, hence 
slows down the training process

● Its output saturates at both ends, hence 
produces “vanishing gradient problem” 
i.e., the gradient becomes zero at these 
saturation points and the network cannot 
learn weights based on backpropagation
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ReLU
● Does not saturate at extremes, hence 

allow gradients to propagate through 
larger networks

● Sparse activations - A characteristic 
property of biological neurons

● ReLUs are computationally 
inexpensive.

● Though Relu’s gradient is undefined at 
x=0, it is not practically a huge 
concern

70
 h=max(0,a)



Other layers

71

Dropout layer - Randomly removes a few 
neurons in the connection. Reduces overfitting

Data 
Preprocessing

Pooling layer - Down samples the size of 
feature map. Promotes translation 
invariance

Does not improve accuracy generally. But 
improves the speed of training



CNN
FC / Fully connected layer:-

● The neurons in the normal layers in CNNs are not 
connected to all neurons of the previous layer. But towards 
the end of the network, all neurons in a layer are 
connected to all neurons in the previous layers. 

● This layer increases the representational power of the 
network but involves more parameters than a convolutional 
layers

● This layer is very useful for making classification decision 
based on the learnt feature maps. Fully connected layer 
gives the power to a neuron to mix all features of the 
previous layer, which is not possible with convolution.

● The last fully connected layer does the function of a SVM 
or softmax 72



73

CNN: What Changed

● ReLU
● Shared Weights
● Specialized Layers: CP
● GPGPU
● Availability of OSS 

Libraries/Datasets
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Overfitting Regularisation

Overfitting increases with number of neurons. But it is not a 
good practice to decrease the number of neurons but to use 
regularisation

Noise in the data is also fit by the model leading 
to overfitting Regularisation helps to generalise to the given data 

while maintaining the representational power of the 
network

Types of regularisation:-
● L1 regularisation - Prefers sparse distribution
● L2 regularisation - heavily penalizes peaky 

weight vectors and prefers more diffuse 
weight vectors.

● Combination - Combination of both
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The one who listens to lecture, 
should write the code..!



HYPERPARAMETER STRATEGIES
● Hyperparameters are parameters which are not 

learned by the algorithm but should be manually 
fixed empirically. Deep learning involves several 
hyperparameters like learning rate, batch size, size 
of convolution, stride etc..

● First do a coarse search with small epochs and fine 
search with larger epochs

● If the best value for a hyperparameters occurs in 
the border of an interval, do a double check by 
trying values beyond the boundary so that so you 
don’t miss out on the optimal hyperparameter

● Don’t do grid search, always prefer random search 76



Impact of deep in ILSVRC

77

ALEXNET - The gamechanger



Impact of deep in ILSVRC

78

ALEXNET - The gamechanger



Alexnet architecture details
It consists of 8 layers - 5 convolutional layers and 
3 fully connected layers.

79



Residual Networks
Counterintuitively, error increases with 
increase in depth beyond a certain point

80

The idea of skip connection 
suggests that it is easier to learn 
minor modifications to identity 
functions



Google net

● The biggest contribution from 
google net was the introduction of 
inception module - A module where 
features from multiple layers can be 
mixed together

● Inception provides a way for 
combining local and global features

81



Spatial Transfer Networks (STN)
● Introduces a network to make images invariant to rotations and translations
● It consists of a localisation network that computes the spatial transformation, 

creation of sampling grid through a grid generator and a sampler which warps 
the input based on the generated grid.

● Link for STN 
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https://drive.google.com/file/d/0B1nQa_sA3W2iN3RQLXVFRkNXN0k/view


Autoencoders
● Autoencoder is a network which is typically used to learn a fixed number of 

features that can best represent the data 
● This type of networks can be used for data compression

83



Recurrent Neural Network

Unlike feedforward neural network, RNN can have loops.

Useful for Sequential inputs.

Useful in applications where memory about the past output can play a role in 
predicting the current output



Visualization examples
Techniques:-

1. Layer activations
a. Visualise the activations of the network. When we use ReLU,  the activations starts out relatively blobby but 

spreads out during learning.
b. Some activations may be all zero indicating high learning rate.

2. Visualise weights
a. Weights are the most interpretable on the first layer, which is looking at the input pixels directly.
b. Weights from other layers can be visualised too. They will usually form some smooth patterns. Noisy patterns 

indicate that the network has not probably learnt well and needs to trained longer.
3. Retrieving images that maximally excite a neuron.

a. A large dataset of images is taken. The images which fired maximally for some neuron are recorded. Hence 
this will give us a good insight into what the neuron has learnt.

b. One problem with this is that each Relu neuron might not learn something sematic. It is the combination of 
several Relu neurons that learn something semantic.

 85



Visualization examples
4. Low dimensional embedding :-

Several visualisation techniques have been proposed which convert the image 
vectors in high dimensional space to a 2-D space, preserving the pairwise 
distance between any two points. The best known technique is tsne- Embedding

5.Occluding parts of image ( for classification):-

We can set a patch of the image to be all zeros. We can iterate position of the 
patch throughout the image and record the probability of correct class label as a 
function of position. A 2-dimensional heat map can be produced through such 
procedure. The probability should reduce considerably at position where the actual 
object is placed in the image.
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Be careful with DATA

87
Nuts

?

Bolts



Challenges (GPU for Training)

88




