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Let's Digress into
Regression




Gradient Descent

The magnitude of the update is
proportional to the error term

(y() -h 6 (x(®)))

If a training example on which
our prediction nearly matches
the actual y (i), there is little
need to change the parameters
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Repeat until convergence {

6; :=0;+ a ity (¥ — ho(z?)) &}

}

Batch Gradient e

Descent for i=1 to m, {

Stochastic Gradient
Descent (SGD)

0j N 9j + « (y(i) = ho(x(t))) fl?;-i)

10

(for every 7).

(for every j).

Descending with step coefficient 0.005 {iteration 50)

) = %% * sin(x)

Start (2.53.7)

End (4.9-23.7),

-30
1
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Linear Classifier
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Parts of an ML LU CLEL

AIgO: ERM e Hypothesis space, the set of possible hypotheses it can
come up with in order to model the unknown target
function by formulating the final hypothesis

Training Set e Anexample (linear function)  h(z) =) i =6z,
=0

Learning I

Algorith
gorithm (8) X - Training data Y -Labels h(8) = Predicted label

Predicted y e Cost function =>J(8) =h(8)-y  [Predicted - Actual]

0
e UpdateRule ¢ .—¢, — aa—on(e).
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Logistic
Regression

e Bolt e Nut

The Line can be drawn from the
learned parameters

8,+6,X,+8,X,=0

X, =6,/6, +0,X, /6,

Compactness —

Circularity —
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Logistic
Regression

Training Set

Learning
Algorithm (8)

Predicted y
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Learning

X - Training data Y - Labels h(8) = Predicted label

e This can be simplifiedas  h(x) = 9(6"z) =

e Costfunction J(0) = %Z(hg(m(i)) _y0y2
i=1

d
e UpdateRule Y ¢=9j—aa—9jJ(9)-

Gradient Descent: Starts with some initial value of 8 and
repeatedly performs update

13



Overfitting &
Underfitting

ho(z) = g0 + 0121 + Oaz2) (00 + 0171 + 22 9(O0 + 0121 + 227

2 212
( g = sigmoid function) +0327 + 0473 +03x%m§ T 94“%-’”2
+05x129) +0szizs + Oz + ...
UNDERFITTING OVERFITTING
(high bias) (high variance)
gx% 14
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Overfitting &
Underfitting

How to Fix
- Crose Valldat ho(z) = g(0 + 0121 + Oax2) g(fp + Or21 + o 9(60 -; 011 + %2932%
. ross Validation
2 Feature selection ( g = sigmoid function) +03:1:f T 943:% +03:c%m§ o 049::1;:1;2
' o +052122) +OsxiTs + O + ..
3. Regularization
UNDERFITTING OVERFITTING
(high bias) (high variance)

Regularization

12 _ . ‘
J(0) = ——3_ [y log(he (@) + (1 - ) log(1 — ho(a)
i=1

Regularization parameter which
penalizes higher order 6

15
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ANTRNN

Basic ML Notebook



Problems

Why Logistic Regression does not
work?

—

N
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Compactness —
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More intelligent
classifier

Which of the linear separators is
optimal?
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e Bolt e Nut

Margins

Let's take the Logistic regression
example

Among A, B and C which data point
would you confidently classify as Bolt?

If the point is far from the separating
hyperplane, we may be significantly
more confident in our predictions

Compactness —

Find a decision boundary that allows
us to make all CORRECT and
CONFIDENT predictions

Circularity —
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SVM

Optimal Margin Classifier

Examples closest to the
separator are support vectors.

Margin p of the separator is the
distance between support vectors
r=(WT™X+b) /W

Functional Margin
Yo @)=y @)W x+b)

Soliton
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Compactness —

Bolt

v

Circularity —

20



Nonseparable Data

We learned that SVM is a Linear
Classifier

Can SVM classify the given data?

Soliton
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Y Label

Data projected to R~2 (nonseparable)
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Project data to Higher Dimension

Data projected to R~2 (nonseparable)

15 T T
Data in R~ 3 (separable)
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Hyperplane re-projection in 2D

Data projected to R~2 (hyperplane projection shown)

15
Data in R™3 (separable w/ hyperplane)
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http://www.youtube.com/watch?v=9NrALgHFwTo

We only need Dot Products..! Not the High Dimension Data /

i - T
Kernel Trick K(x, 2) = 9(x)" ¢(2)
= — =
I1T2 L n
It is so simple. Is it True? 2, Ts K(z,2) = (Zm) (Zz,vzi)
i=1 i=1
T2T1 n n
() = | z2z2 | . = ZZ%%’%’ZJ'
Higher Dimensional Projection is To3 ‘;1 del
Expensive - v oo
e Impractical for Large Dimensions Fgl1 = Z(z,m,)(z,z,)
e Huge memory and Computation 3Ty hi=l
are required T3T3
Transformation from N = =
dimension to M Dimension is O(N?) O(N)

O(N?) expensive

Computationally Faster and No extra memory needed

Soliton 25
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SVM

Find the Hyperplane which optimizes
the Functional and Geometric margin
iteratively

Soliton
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Hands-on is Coming..!


https://s.users.crestle.com/g8i0a4g4/notebooks/ahws_17/examples/src/07.svm_nuts_bolts.ipynb

Real World Data

In the real world the data may not be
Linearly separable

How do we classify the data now?

Soliton
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Compactness —

e Bolt e Nut
105 ; " . : - -
100 |- i
) o
® o) )
(Y
® ) @ © o000
95 | ® .
e o e © o )
@ e o
© ) :
90 | ] [ ] -
) )
o
85 | ) ) o -
)
) )
@ > ® . ®
80 | ™) i
o ]
CY X ) ® e o o
) fe)
75 ® ® ® @ -
) o)
70 1 1 1 L 1 1
70 75 80 85 90 95 100
Circularity —

105

28



More Features

If | project the same data into 3D/ 4D /
5D, etc, can | separate the data
Linearly?

Introduce more features for more
accurate classification

N
Soliton
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ML Advice - Diagnostics

Try getting more training examples

Fixes high Variance

Try a smaller set of features

Fixes high Variance

Try a larger set of features

Fixes high Bias

Try changing features (e.g, email
header features)

Fixes high Bias

Run gradient descent for more
iterations

Fixes optimization algorithm

Try Newton's method

Fixes optimization algorithm

Use a different value for A

Fixes optimization objective

Try using an SVM

Fixes optimization objective

S=
Soliton
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error

High Variance

S

e
\\

\

s

Test error

Desired performance

Training error

error

m (training set size)

Credits: ¢s229, Andrew Y. Ng

High Bias
\
\\
\
\*\,\ Test error
Training error
/ Desired performance

m (training set size)
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ML Advice

Rule #1: Plot the Data

Questions to ask:

Is the Algorithm converging?

Are you optimizing the right function?
Is the value for A is correct?

Is the value for C is correct?

Are initial parameters correct?

Soliton
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Credits: ¢s229, Andrew Y. Ng

Helps to understand how
much error is attributable
to each component?

Helps to identify Poor
components by which we
can improve performance

List down accuracy DROP
after introducing each
component.

Plug in ground-truth for
each component, and see
how accuracy changes

Error Analysis Ablative Analysis

Helps to understand how
each component in the
system helps to achieve
final better accuracy

Helps to identify the less
contributing component
so they can be removed

List down what is the
accuracy IMPROVEMENT
after each level starting
from the basic model

Remove one component
at a time and see how
accuracy drops

31



Meaningful
Compression

Structure
Discovery

Image
Classification

Customer Retention

Big data Dimensionalit Feature Idenity Fraud - ; : i i
I I ’es ‘ ’I I\/I I o ), (¢ o Diagnostics
y Visualistaion Reduction Elicitation Detection lassification g

Classification

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
L ]
Machine W

Growth
Prediction

Rz 2 Unsupervised Supervised

Systems
Logistic Regression

Decision Tree

AdaBoost Eﬁ?&:‘;

Clustering Regression

Market
Forecasting

Customer

Segmentation L e a r n i n g

Naive Bayes Classification
SVM (Support Vector Machine)

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning
Robot Navigation Skill Acquisition
Learning Tasks
——NN—
S 32
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Types of Learning

Supervised: Learning by Labelled Ex
e Eg. Face Recognition
e Amazingly effective if you have
labelled examples

Unsupervised: Discovering Patterns
e Eg. Google News - Data
Clustering
e Useful if you lack labelled data

Reinforcement: Feedback right/wrong
e Eg. Playing chess by winning or
losing
e  Works well in some domains,
becoming more important
==
§oliton

a Better World

Training sct

Unsupervised

Machine learning workflow

Feature extraction Machine learning

algorithm

Grouping of objects

!ased on some com'n
' chara'iistics

Predictive model

J

33



Unsupervised
Learning

K-means Clustering

— >
Soliton

Vision for a Better World

https://www.datascience.com/blog/k-means-clustering

Input Data

Speeding Feature
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Unsupervise
Learning

e Clustering

N
Soliton

Vision for a Better World https://www.datascience.com/blog/k-means-clustering







Reinforcement
Learning

learning rate a.
inverse temperature
discount rate y

observation

A
L S /\'
Soliton
Vision for a Better World
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http://www.youtube.com/watch?v=V1eYniJ0Rnk

MOOC for ML

cs229 is good place to start
Do a lot of assignments
Work on pet projects

Contribute to ML Open source libraries

=

Soliton
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Courses
e ML:cs229 by Andrew Y. Ng
e RL: David Silver

Books:

Blogs & Github:
e Scikit-Learn examples
e ML Playground

39


https://www.youtube.com/watch?v=2pWv7GOvuf0&app=desktop
http://ml-playground.com/

How to Solve this?

We MAY be able to solve this by
introducing one more feature which
MAY separate them linearly.

Or | will let SVM project it to higher
dimension and find hyperplane and
reproject it back

Do you see any pattern? Any
mathematical solution?

==
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a Better World
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Clue..!

Think in MATHEMATICS..!

— >
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Cartesian -> Polar

r=v(x2+y2)

B=tan-1(y/x)

P(x,y) Cartesian

/ P(r,d ) polar

—

N
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Cartesian -> Polar

r=v(x2+y2)

B=tan-1(y/x)

—

N
Soliton
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>

P (x,y) Cartesian
Pr,8 ) polar

Y
0
a A
A, A
A
Lo A
i AA
A
A
A
A
A
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Deep Learning

What is Next? -

Let the Algorithm Learn these \
\
e Functions osr - o \
/ N\
e Features /
/
ON ITS OWN... / /
Ll /
[ /
/
/
N\ »
-0.5 \ \\ﬁ /,
\
-1 -
3 3 0.5 0 0.5 1

=
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Lunch Break

Feed yourselves well to feed the Machines more..!



Day 2 - AN 1 (DL)

What is the limitation of simple Image Processing and why we need intelligent
systems?

46



What we know from Neuroscience

Layer wise processing
Hierarchical

Simple Cells -> Complex Cells
Closest Analog: IT

Fovea

Fusion of other sensory i/p
Generative Model of world
Even V1 gets feedback from
Feedforward IT ~ CNN

(role of feedback)

Motor. command
Categorical judgments, )

o 3 140-190 ms
decision making

Simple visual forms
edges, corners

descriptions,
faces, objects

To spinal cord
< Tofingermuscle <« —160-220 ms
180-260 ms

[picture from Simon Thorpe]

http://timdettmers.com/2015/07/27/brain-vs-deep-learning-singularity/
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http://timdettmers.com/2015/07/27/brain-vs-deep-learning-singularity/

Limitation of Traditional ML

Need to hand engineer features which can take a lot
of time

The limitations in its ability to represent complex
features ( Requires a lot of diligence and intelligence)
Models developed for one problem cannot be easily
be utilised for a similar problem

48



Simplest Models
Perceptron vs. the point

neuron

* Incoming signals from synapses are summed
up at the soma

. X , the biological “inner product”

* On crossing a threshold, the cell “fires”
generating an action potential in the axon hillock

Synsptic terminals

) sossizond of prasynaptic neurons
input X

vector

X1
w1

/
o

, . u 4

linear > >

sumnation

@ " Cettbody of
postsynaptic
neuron

— Axon of
postEynaptc
output nevrcn

recminal
® Excitatory synspse

Te

branches of
© Inhibitory synapse presynaptic
neurons

Synaptic inputs: Artist’s
conception
The McCulloch and Pitt’s neuron




Simplest Models

e Perceptron training

Include bias term as the third weight(w3) with its input always set to 1
Step 1: Initialization: w, = 0,i=1ton
For each of the training sample do steps 2 -4
Step 2: Compute output by weighted linear combination of inputs
(Vi=w1*x1+w2*x2+ 1~ bias)
Step 3: Find the error ( Error = Anticipated output - predicted output)
Step 4. Update each weight based on the following
AWi = Error * 9 * Xi
Wi = Wi+ AWi
Where 3 is the learning rate and its range is
O<=2<1
Step 5: Repeat the procedure until no error results

50
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https://s.users.crestle.com/g8i0a4g4/notebooks/ahws_17/examples/src/07.svm_nuts_bolts.ipynb

Perceptron Limitations - Linear separability

e A simple perceptron cannot learn a classifier for a XOR gate
e How to draw a decision boundary in case of a XOR gate?

4 w . /r
4 R : 7
X1 [ X2 | X1 XOR X9 N i S
1 + + — 1 \-I-\— \\\ ’// —_— 4
olo| o Sl Gl
X X ~ -._,“t,/_._?_‘.\_\,/./ N
2 2 7 N A,
0| 1 AN 7N
1 0 1 O 4 — + 0/—— e /’/’ ) ‘\+
1] 1 0 i I & T
0 X, 1 /, X,



Problem of Linear separability

Linear vs. nonlinear problems

v
A tB
° ®e®©

e © & . [ J— @
® o . = o /0, e o
® - i @ ® o °

Y ® @ @
] @ @

Can this kind of perceptron provide solutions to all kinds of data patterns we might encounter in practice? Let’s find
out

This is because we don’t have non-linear elements in our network. Hence, this kind of network can only learn linear
functions of inputs.
How can we improve the network to learn non-linear functions?

Key observation - Cannot directly classify data. Convert the data to a new feature space to classify
Nonlinearities should be included in the network


http://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.01&regularizationRate=0&noise=0&networkShape=2,1&seed=0.05904&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.01&regularizationRate=0&noise=0&networkShape=2,1&seed=0.05904&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Sigmoid activation function

e We can include non-linear
functions in our to improve the
representational power of the
network.

e \We know how a initial models of
how neuron fires.

e

0.4

!].2:

B R 0.5 1x

e Can we represent this kind of
activation as continuous and
smooth function

The sigmoid function is shown as follows

o

©
—

[—

o8} 1l +e*

Here x is weighted combination of the neuron
inputs.

The neuron fires when x >> 0 and does not
fire when x << 0. The neuron lies in a
transition state when when x = 0.

The function is smooth and differentiable
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Case of two layers with non-linearities - MLP

- The perceptron revenge

Convert the inputs into a new feature space where the data points are
linearly separable

This necessitates the need at least two neurons with non-linearities. This
kind of architecture is called Multilayer Perceptron (MLP)

The first layer is called input layer, the layer at the last is called output
layer. The layer / layers in between are called hidden layers

¥ o

0 -t ———




MLP

e A simple Multilayer network will consist of an input layer, output layer and one
or more hidden layer in between

e It is not necessary that each hidden layer should contain same number of
neuron. Each hidden layer usually contains a non-linear activation function

<= Outputs

"~ hidden
« layers

<= input vector
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But what about training?

. . . . flx) |
In a single layer perceptron, there was direct interaction between
(finding this point x is the

input and output, hence we were able to update their weights o0l of bt dvcar)
directly based on output and inputs. — s

negative values) positive
Training becomes a little harder in MLPs, since we there are
multiple layers of weight. .

We will measure the error committed by the network through an L o )
objective function ( Just measure the squared difference between
the anticipated output and predicted output - MSE)

We will then try to find the minima of the objective function through
gradient descent

But how do we update weights of the network based on direction to
move in gradient descent? .

2b L o 4 v e &2 o0 oo
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MLP - Backpropagation

e Backpropagation provides a way to
compute the gradient of the error
function with respect to each of the
weights in the network.

e This provides a way to update update
the weights of the network based on
the error function.

Iteration:
Emor. 054

Terminologies:- *

C - cost function
L :th

a- " neuro
oL - error of the j" neuron in the L™
layer

bjI - bias of the j" neuron in the L™
layer

I . . . h
W weight connecting the j!

neuron in the L™ layer to k™ neuron
in the L-1™ layer

o = 9C

e L
o' (z7).
J aajl__ 'j

61 - ((wl+1)T61+1) ® O'/(Zl),

a_c =l

) 7’
abj
aC = al_l(sl.

1 K =ge
6wjk
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Representational power of MLP

Can this kind of MLP learn any functions?
It turns out that this kind of neural network
with one hidden layer is a universal A
approximator i.e., these neural networks can i LA aiiin
model any continuous function.

Then why are many hidden layers required?
It is practically difficult to learn the exact
values of the parameters in such networks.
Hence multiple layers make it practically
possible to exploit the representational
power of a neural network.

59



MLP - Limitations

Very expensive training process (Too many parameters to learn)

Not scalable to a larger architecture. The number of neurons increases rapidly
with the number of neurons in the network.
Does not converge
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What do Neural Networks Learn?

o - T :ﬂﬁ

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer

(input pixels)




CNN

Neurons are arranged in a 3D layer, unlike a MLP, where it is arranged in a
2D layer

Each neuron views only a specific portion of the input and shares its
parameters with many neurons in the same layer

Encodes properties that are more desirable for images.

Convolutional neural networks calculate the output from the input by repeated
applying convolution operation.

Linear Object
Convolutions Pooling Convs Classifier Categories / Positions
> { ‘:- :l }at (xi,yi)

-

ok

MG [ratxiy)

4’
4 Q%;i‘t‘} } at (xk,yk)

C3 feature maps

Input data

~
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Convolution - signals motivation

Continuous case
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convolution is a mathematical operation on two functions to produce a third function giving
the summation of the pointwise multiplication of the two functions as one of the functions is

translated throughout
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Discrete case
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https://en.wikipedia.org/wiki/Operation_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Pointwise

Convolution
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Convolution
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http://cs231n.github.io/assets/conv-demo/index.html
http://cs231n.github.io/assets/conv-demo/index.html

Convolution by Neurons

> O
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\\ ‘ output layer

hidden layer 1 hidden layer 2

input layer



Convolution

ZERO PADDING - zeros can be added to the feature map to increase the size of
the feature map. The idea is to keep the size of the feature map the same
throughout

STRIDES - Number elements that should be skipped in the feature map while
doing convolution

Zero Padding Convolution on a feature map with
three different strides
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What does deep Deep Learning
learning learn?

>
N\,
N\

MLPs without bias term model = q

linear transformation // N &

MLPs with bias term model

\\
N
\N-//

affine transformation I r vam| T (

The activation functions 4

introduces further os i1\ N =8 1
\

non-linearities

Deep learning learns a . ‘ ‘ i

transformation of a feature
space that becomes linearly
separable in a different
topological space

Link -

—

N
Soliton

Vision for a Better World



http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Problem with tanh layer /sigmoid

The tanh/ sigmoid activation function
squashes a real number in between zero
and one

It involves expensive operations, hence
slows down the training process

Its output saturates at both ends, hence
produces “vanishing gradient problem”
i.e., the gradient becomes zero at these
saturation points and the network cannot
learn weights based on backpropagation
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RelLU

e Does not saturate at extremes, hence
allow gradients to propagate through
larger networks

e Sparse activations - A characteristic
property of biological neurons

e RelUs are computationally
inexpensive.

e Though Relu’s gradient is undefined at
x=0, it is not practically a huge
concern

..........

r

h=max(0,a)
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Other layers

Pooling layer - Down samples the size of
feature map. Promotes translation

invariance Single depth slice
x| [EIS{RIR[2"(4
max pool with 2x2 filters ]
5|6 |7 8| andstide2 6|8 ‘
3|2 [0 3[4
1] 2 [N

y

Dropout layer - Randomly removes a few
neurons in the connection. Reduces overfitting

a) Standard Neural Net (b) After applying dropout.

Data

Preprocessing

Does not improve accuracy generally. But
improves the speed of training
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Fully connected layers

Output layer

e
—re

FC / Fully connected layer:-

The neurons in the normal layers in CNNs are not
connected to all neurons of the previous layer. But towards
the end of the network, all neurons in a layer are
connected to all neurons in the previous layers.

This layer increases the representational power of the
network but involves more parameters than a convolutional
layers

This layer is very useful for making classification decision
based on the learnt feature maps. Fully connected layer
gives the power to a neuron to mix all features of the
previous layer, which is not possible with convolution.

The last fully connected layer does the function of a SVM
or softmax



CNN: What Changed

ILSVRC

ImageNet Classification error throughout years and groups

RelLU

Shared Weights
Specialized Layers: CP
GPGPU

Availability of OSS

j ey i First Blood
11 I I Il I I I I I | | | | Libraries/Datasets

I
g

I

I

Deeper DNN

Network in Network

2014 2013 2012

Li Fei-Fei: ImageNet Large Scale Visual Recognition Challenge, 2014 http://image-net.org/



Overfitting

h

A=

Regularisation

0.001 A=0.01 A=01

sz \ ’ Xz
\\ o O/’ ‘9;
. "% e
o'y + o+ o2+
o °4ty Gty
° a 0 . R b""b\ .
Underfitting Good X Overfitting X1

(high bias)

compromise

(high variance)

Noise in the data is also fit by the model leading

to overfitting

3 hidden neurons

6 hidden neurons

20 hidden neurons

regularisation

&

Overfitting increases with number of neurons. But it is not a
good practice to decrease the number of neurons but to use

S o

Regularisation helps to generalise to the given data
while maintaining the representational power of the
network

Types of regularisation:-

L1 regularisation - Prefers sparse distribution
L2 regularisation - heavily penalizes peaky
weight vectors and prefers more diffuse
weight vectors.

Combination - Combination of both
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The one who listens to lecture,
should write the code..!



HYPERPARAMETER STRATEGIES

Grid Layout

Hyperparameters are parameters which are not
learned by the algorithm but should be manually
fixed empirically. Deep learning involves several
hyperparameters like learning rate, batch size, size
of convolution, stride etc..

First do a coarse search with small epochs and fine
search with larger epochs Random Layout
If the best value for a hyperparameters occurs in
the border of an interval, do a double check by
trying values beyond the boundary so that so you
don’t miss out on the optimal hyperparameter
Don’t do grid search, always prefer random search it 76

Unimportant parameter

Important parameter

Unimportant parameter




Impact of deep in ILSVRC

ILSVRC

ImageNet Classification error throughout years and groups

ALEXNET - The gamechanger

Deeper DNN

Network in Network 321 o [
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2014 2013 2012

Li Fei-Fei: ImageNet Large Scale Visual Recognition Challenge, 2014 http://image-net.org/
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Impact of deep in ILSVRC

ALEXNET - The gamechanger

_______
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dense
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Alexnet architecture details

It consists of 8 layers - 5 convolutional layers and

3 fully connected layers. - AlexNet
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34-layer plain 34-layer residual

Residual Networks

. ien . . i 1 H [Goemwer ] [oemwer ]
Counterintuitively, error increases with The idea of skip connection - .
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Google net L

Convolution
AvgPool
MaxPool
Concat

@ Dropout

- e The biggest contribution from
google net was the introduction of
inception module - A module where
features from multiple layers can be

| = mixed together

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Filter
concatenation

e Inception provides a way for
combining local and global features

4

Previous layer
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Spatial Transfer Networks (STN)

Introduces a network to make images invariant to rotations and translations
It consists of a localisation network that computes the spatial transformation,
creation of sampling grid through a grid generator and a sampler which warps
the input based on the generated grid.
Link for STN

(a) (b) (c) (d)
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https://drive.google.com/file/d/0B1nQa_sA3W2iN3RQLXVFRkNXN0k/view

Autoencoders

e Autoencoder is a network which is typically used to learn a fixed number of
features that can best represent the data

e This type of networks can be used for data compression

_~ Compressed Data
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Recurrent Neural Network

Unlike feedforward neural network, RNN can have loops.
Useful for Sequential inputs.

Useful in applications where memory about the past output can play a role in
predicting the current output
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Visualization examples

Techniques:-

1. Layer activations

a. Visualise the activations of the network. When we use ReLU, the activations starts out relatively blobby but
spreads out during learning.
b. Some activations may be all zero indicating high learning rate.
2. Visualise weights
a. Weights are the most interpretable on the first layer, which is looking at the input pixels directly.
b.  Weights from other layers can be visualised too. They will usually form some smooth patterns. Noisy patterns
indicate that the network has not probably learnt well and needs to trained longer.
3. Retrieving images that maximally excite a neuron.
a. Alarge dataset of images is taken. The images which fired maximally for some neuron are recorded. Hence
this will give us a good insight into what the neuron has learnt.
b.  One problem with this is that each Relu neuron might not learn something sematic. It is the combination of
several Relu neurons that learn something semantic.
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Visualization examples

4. Low dimensional embedding :-

Several visualisation techniques have been proposed which convert the image
vectors in high dimensional space to a 2-D space, preserving the pairwise
distance between any two points. The best known technique is tsne- Embedding

5.0ccluding parts of image ( for classification):-

We can set a patch of the image to be all zeros. We can iterate position of the

patch throughout the image and record the probability of correct class label as a
function of position. A 2-dimensional heat map can be produced through such
procedure. The probability should reduce considerably at position where the actual
object is placed in the image. 86



Be careful with DATA
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Challenges (GPU for Training)
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