
Vision for a Better World

1Not to be circulated outside

Computer Vision
with

Machine Learning
PSG Tech - 2018

The team

Computer Vision and
Machine Learning,

Soliton Technologies

Senthil
Computer Vision and

Machine Learning,
Soliton Technologies

Dhivakar

3

4

Day 2

Had Colorful
Dreams..?

Agenda
Session I

● Linear Regression

● Logistic Regression

● Over / Under Fitting

● SVM

● Other ML Techniques

Linear Classifier

A line should classify the data

But, How do I come up with a Line
which separates both the classes of
data optimally?

6

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

2 ML Problems

7

Circularity →

C
om

pa
ct

ne
ss

 →

Regression Classification

8

Let’s Digress into
Regression

Gradient Descent

● The magnitude of the update is
proportional to the error term
(y(i) − h θ (x (i)))

● If a training example on which
our prediction nearly matches
the actual y (i), there is little
need to change the parameters

9

Batch Gradient
Descent

Stochastic Gradient
Descent (SGD)

Linear Classifier

A line should classify the data

● Randomly Initialize a Line
● Calculate Error
● Move in a Random Direction
● Recalculate Error
● If Error reduced, move in same

direction
● Else move in opposite direction

10

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

Parts of an ML
Algo: ERM

11

Inference

● Hypothesis space, the set of possible hypotheses it can
come up with in order to model the unknown target
function by formulating the final hypothesis

● An example (linear function)

Learning

X - Training data Y - Labels h(θ) = Predicted label

● Cost function => J(θ) = h(θ) - y [Predicted - Actual]

● Update Rule

Training Set

Learning
Algorithm (θ)

h Predicted yx

Logistic
Regression

12

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

The Line can be drawn from the
learned parameters

θ0 + θ1X1+ θ2X2 = 0

X1 = θ0/θ1 + θ2X2 /θ1

Logistic
Regression

13

Learning

X - Training data Y - Labels h(θ) = Predicted label

● This can be simplified as hθ(x) =

● Cost function

● Update Rule

Gradient Descent: Starts with some initial value of θ and
repeatedly performs update

Training Set

Learning
Algorithm (θ)

h Predicted yx

Overfitting &
Underfitting

1.

14

Overfitting &
Underfitting

How to Fix

1. Cross Validation
2. Feature selection
3. Regularization

15

Regularization

Regularization parameter which
penalizes higher order θ

16

All (Wo)Men must Code
Basic ML Notebook

Problems

Why Logistic Regression does not
work?

17

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

More intelligent
classifier

Which of the linear separators is
optimal?

18

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

Let’s take the Logistic regression
example

Among A, B and C which data point
would you confidently classify as Bolt?

If the point is far from the separating
hyperplane, we may be significantly
more confident in our predictions

Find a decision boundary that allows
us to make all CORRECT and
CONFIDENT predictions

Margins

19

A

B
C

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

SVM
Optimal Margin Classifier

● Examples closest to the
separator are support vectors.

● Margin ρ of the separator is the
distance between support vectors

 r = (WTX + b) / ||W||

● Functional Margin
 γ ˆ (i) = y (i) (wT x + b)

20

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

Nonseparable Data
We learned that SVM is a Linear
Classifier

Can SVM classify the given data?

21

Project data to Higher Dimension

22

[x1, x2] = [x1, x2, x1
2+x2

2]

Hyperplane re-projection in 2D

23

Demo

24

Just,
● Project the data into higher

Dimension
● Find Hyperplane
● Re-project the Hyperplane back

to original dimension

http://www.youtube.com/watch?v=9NrALgHFwTo

Kernel Trick

It is so simple. Is it True?

25

Higher Dimensional Projection is
Expensive

● Impractical for Large Dimensions
● Huge memory and Computation

are required
● Transformation from N

dimension to M Dimension is
O(N2) expensive

We only need Dot Products..! Not the High Dimension Data

K(x, z) = φ(x)T φ(z)

Computationally Faster and No extra memory needed

O(N2) O(N)

SVM

Find the Hyperplane which optimizes
the Functional and Geometric margin
iteratively

26

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

27

Hands-on is Coming..!
IPython Notebook

https://s.users.crestle.com/g8i0a4g4/notebooks/ahws_17/examples/src/07.svm_nuts_bolts.ipynb

Real World Data

In the real world the data may not be
Linearly separable

How do we classify the data now?

28

● Bolt ● Nut

Circularity →

C
om

pa
ct

ne
ss

 →

More Features

If I project the same data into 3D / 4D /
5D, etc, can I separate the data
Linearly?

Introduce more features for more
accurate classification

29

● Bolt ● Nut

Circularity →
Compactness →

Le
ng

th
 →

ML Advice - Diagnostics

30

Try getting more training examples Fixes high Variance

Try a smaller set of features Fixes high Variance

Try a larger set of features Fixes high Bias

Try changing features (e.g, email
header features)

Fixes high Bias

Run gradient descent for more
iterations

Fixes optimization algorithm

Try Newton’s method Fixes optimization algorithm

Use a different value for λ Fixes optimization objective

Try using an SVM Fixes optimization objective

High Variance

High Bias

Credits: cs229, Andrew Y. Ng

Rule #1: Plot the Data

Questions to ask:

Is the Algorithm converging?

Are you optimizing the right function?

Is the value for λ is correct?

Is the value for C is correct?

Are initial parameters correct?

ML Advice

31
Credits: cs229, Andrew Y. Ng

Error Analysis Ablative Analysis

● Helps to understand how
much error is attributable
to each component?

● Helps to identify Poor
components by which we
can improve performance

● List down accuracy DROP
after introducing each
component.

● Plug in ground-truth for
each component, and see
how accuracy changes

● Helps to understand how
each component in the
system helps to achieve
final better accuracy

● Helps to identify the less
contributing component
so they can be removed

● List down what is the
accuracy IMPROVEMENT
after each level starting
from the basic model

● Remove one component
at a time and see how
accuracy drops

Types of ML

Classification

● Logistic Regression
● Decision Tree
● AdaBoost
● Naive Bayes Classification
● SVM (Support Vector Machine)

32

Types of Learning

Supervised: Learning by Labelled Ex
● Eg. Face Recognition
● Amazingly effective if you have

labelled examples

Unsupervised: Discovering Patterns
● Eg. Google News - Data

Clustering
● Useful if you lack labelled data

Reinforcement: Feedback right/wrong
● Eg. Playing chess by winning or

losing
● Works well in some domains,

becoming more important

33

Unsupervised
Learning

K-means Clustering

34
https://www.datascience.com/blog/k-means-clustering

Input Data

K = 2

K = 4

Unsupervised
Learning

● Clustering

35
https://www.datascience.com/blog/k-means-clustering

Reinforcement
Learning

How does a Human learn?

● Tilt the bike in 0 deg: Goes out

of Fence

● Tilt it in 90 deg: Loses balance

and falls down

● Getting these feedback /

reward, learn how to ride i.e,

learn the angle

36
https://www.datascience.com/blog/k-means-clustering

Reinforcement
Learning

●

37
https://www.datascience.com/blog/k-means-clustering

Reinforcement
Learning

●

38
https://www.datascience.com/blog/k-means-clustering

http://www.youtube.com/watch?v=V1eYniJ0Rnk

MOOC for ML

39

Courses
● ML: cs229 by Andrew Y. Ng
● RL: David Silver
●

Books:

Blogs & Github:
● Scikit-Learn examples
● ML Playground

cs229 is good place to start

Do a lot of assignments

Work on pet projects

Contribute to ML Open source libraries

https://www.youtube.com/watch?v=2pWv7GOvuf0&app=desktop
http://ml-playground.com/

How to Solve this?

We MAY be able to solve this by
introducing one more feature which
MAY separate them linearly.

Or I will let SVM project it to higher
dimension and find hyperplane and
reproject it back

Do you see any pattern? Any
mathematical solution?

40

x

y

Clue..!

Think in MATHEMATICS..!

41

Cartesian -> Polar

r = √ (x2 + y2)

θ = tan-1 (y / x)

42

x

y

r

θ

x

y

r

θ

r

θ

x

y

Cartesian -> Polar

r = √ (x2 + y2)

θ = tan-1 (y / x)

43
r

θ

What is Next?

Let the Algorithm Learn these

● Functions
● Features

ON ITS OWN…!

44

Deep Learning

45

Lunch Break
Feed yourselves well to feed the Machines more..!

Day 2 - AN 1 (DL)
What is the limitation of simple Image Processing and why we need intelligent
systems?

46

What we know from Neuroscience
● Layer wise processing
● Hierarchical
● Simple Cells -> Complex Cells
● Closest Analog: IT
● Fovea
● Fusion of other sensory i/p
● Generative Model of world
● Even V1 gets feedback from
● Feedforward IT ~ CNN
● (role of feedback)

http://timdettmers.com/2015/07/27/brain-vs-deep-learning-singularity/
47

http://timdettmers.com/2015/07/27/brain-vs-deep-learning-singularity/

Limitation of Traditional ML
● Need to hand engineer features which can take a lot

of time
● The limitations in its ability to represent complex

features (Requires a lot of diligence and intelligence)
● Models developed for one problem cannot be easily

be utilised for a similar problem

48

Simplest Models

49

Simplest Models
● Perceptron training

Include bias term as the third weight(w3) with its input always set to 1
Step 1: Initialization: wi = 0, i = 1 to n
For each of the training sample do steps 2 -4
Step 2: Compute output by weighted linear combination of inputs
 (Vi = w1 *x1 + w2 * x2 + 1 * bias)
Step 3: Find the error (Error = Anticipated output - predicted output)
Step 4: Update each weight based on the following
 𝜟Wi = Error * э * Xi
 Wi = Wi + 𝜟Wi
 Where э is the learning rate and its range is
 0 <= э < 1
Step 5: Repeat the procedure until no error results

50

W1
W2

Bias

Vi

X1 X2
1

51

Enough Talk..! Let’s Code!!
IPython Notebook

https://s.users.crestle.com/g8i0a4g4/notebooks/ahws_17/examples/src/07.svm_nuts_bolts.ipynb

 Perceptron Limitations - Linear separability

● A simple perceptron cannot learn a classifier for a XOR gate
● How to draw a decision boundary in case of a XOR gate?

52

Problem of Linear separability

● Can this kind of perceptron provide solutions to all kinds of data patterns we might encounter in practice? Let’s find
out

● This is because we don’t have non-linear elements in our network. Hence, this kind of network can only learn linear
functions of inputs.

● How can we improve the network to learn non-linear functions?
● Key observation - Cannot directly classify data. Convert the data to a new feature space to classify
● Nonlinearities should be included in the network

53

http://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.01®ularizationRate=0&noise=0&networkShape=2,1&seed=0.05904&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.01®ularizationRate=0&noise=0&networkShape=2,1&seed=0.05904&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Sigmoid activation function
● We can include non-linear

functions in our to improve the
representational power of the
network.

● We know how a initial models of
how neuron fires.

● Can we represent this kind of
activation as continuous and
smooth function

54

● The sigmoid function is shown as follows

● Here x is weighted combination of the neuron
inputs.

● The neuron fires when x >> 0 and does not
fire when x << 0. The neuron lies in a
transition state when when x ≈ 0.

● The function is smooth and differentiable

Case of two layers with non-linearities - MLP
- The perceptron revenge

● Convert the inputs into a new feature space where the data points are
linearly separable

● This necessitates the need at least two neurons with non-linearities. This
kind of architecture is called Multilayer Perceptron (MLP)

● The first layer is called input layer, the layer at the last is called output
layer. The layer / layers in between are called hidden layers

55H1

H2

MLP
● A simple Multilayer network will consist of an input layer, output layer and one

or more hidden layer in between
● It is not necessary that each hidden layer should contain same number of

neuron. Each hidden layer usually contains a non-linear activation function

56

But what about training?
● In a single layer perceptron, there was direct interaction between

input and output, hence we were able to update their weights
directly based on output and inputs.

● Training becomes a little harder in MLPs, since we there are
multiple layers of weight.

● We will measure the error committed by the network through an
objective function (Just measure the squared difference between
the anticipated output and predicted output - MSE)

● We will then try to find the minima of the objective function through
gradient descent

● But how do we update weights of the network based on direction to
move in gradient descent?

57

MLP - Backpropagation

● Backpropagation provides a way to
compute the gradient of the error
function with respect to each of the
weights in the network.

● This provides a way to update update
the weights of the network based on
the error function.

58

Terminologies:-
C - cost function
aj

L- jth neuro
𝛿j

L - error of the jth neuron in the Lth
layer
bj

l - bias of the jth neuron in the Lth
layer
wl

jk- weight connecting the jth
neuron in the Lth layer to kth neuron
in the L-1th layer

Representational power of MLP
● Can this kind of MLP learn any functions?
● It turns out that this kind of neural network

with one hidden layer is a universal
approximator i.e., these neural networks can
model any continuous function.

● Then why are many hidden layers required?
● It is practically difficult to learn the exact

values of the parameters in such networks.
Hence multiple layers make it practically
possible to exploit the representational
power of a neural network.

59

MLP - Limitations
● Very expensive training process (Too many parameters to learn)
● Not scalable to a larger architecture. The number of neurons increases rapidly

with the number of neurons in the network.
● Does not converge

60

What do Neural Networks Learn?

CNN
● Neurons are arranged in a 3D layer, unlike a MLP, where it is arranged in a

2D layer
● Each neuron views only a specific portion of the input and shares its

parameters with many neurons in the same layer
● Encodes properties that are more desirable for images.
● Convolutional neural networks calculate the output from the input by repeated

applying convolution operation.

62

Convolution - signals motivation

63

2D

Continuous case
Discrete case

convolution is a mathematical operation on two functions to produce a third function giving
the summation of the pointwise multiplication of the two functions as one of the functions is
translated throughout

https://en.wikipedia.org/wiki/Operation_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Pointwise

Convolution

64

1D 3D

2D

Convolution

65

Demo

http://cs231n.github.io/assets/conv-demo/index.html
http://cs231n.github.io/assets/conv-demo/index.html

Convolution by Neurons

66

ZERO PADDING - zeros can be added to the feature map to increase the size of
the feature map. The idea is to keep the size of the feature map the same
throughout

STRIDES - Number elements that should be skipped in the feature map while
doing convolution

67

Zero Padding Convolution on a feature map with
three different strides

Convolution

What does deep
learning learn?

● MLPs without bias term model
linear transformation

● MLPs with bias term model
affine transformation

● The activation functions
introduces further
non-linearities

● Deep learning learns a
transformation of a feature
space that becomes linearly
separable in a different
topological space

● Link - convnetjs

68

Deep Learning

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

 Problem with tanh layer /sigmoid

● The tanh/ sigmoid activation function
squashes a real number in between zero
and one

● It involves expensive operations, hence
slows down the training process

● Its output saturates at both ends, hence
produces “vanishing gradient problem”
i.e., the gradient becomes zero at these
saturation points and the network cannot
learn weights based on backpropagation

69

ReLU
● Does not saturate at extremes, hence

allow gradients to propagate through
larger networks

● Sparse activations - A characteristic
property of biological neurons

● ReLUs are computationally
inexpensive.

● Though Relu’s gradient is undefined at
x=0, it is not practically a huge
concern

70
 h=max(0,a)

Other layers

71

Dropout layer - Randomly removes a few
neurons in the connection. Reduces overfitting

Data
Preprocessing

Pooling layer - Down samples the size of
feature map. Promotes translation
invariance

Does not improve accuracy generally. But
improves the speed of training

CNN
FC / Fully connected layer:-

● The neurons in the normal layers in CNNs are not
connected to all neurons of the previous layer. But towards
the end of the network, all neurons in a layer are
connected to all neurons in the previous layers.

● This layer increases the representational power of the
network but involves more parameters than a convolutional
layers

● This layer is very useful for making classification decision
based on the learnt feature maps. Fully connected layer
gives the power to a neuron to mix all features of the
previous layer, which is not possible with convolution.

● The last fully connected layer does the function of a SVM
or softmax 72

73

CNN: What Changed

● ReLU
● Shared Weights
● Specialized Layers: CP
● GPGPU
● Availability of OSS

Libraries/Datasets

74

Overfitting Regularisation

Overfitting increases with number of neurons. But it is not a
good practice to decrease the number of neurons but to use
regularisation

Noise in the data is also fit by the model leading
to overfitting Regularisation helps to generalise to the given data

while maintaining the representational power of the
network

Types of regularisation:-
● L1 regularisation - Prefers sparse distribution
● L2 regularisation - heavily penalizes peaky

weight vectors and prefers more diffuse
weight vectors.

● Combination - Combination of both

75

The one who listens to lecture,
should write the code..!

HYPERPARAMETER STRATEGIES
● Hyperparameters are parameters which are not

learned by the algorithm but should be manually
fixed empirically. Deep learning involves several
hyperparameters like learning rate, batch size, size
of convolution, stride etc..

● First do a coarse search with small epochs and fine
search with larger epochs

● If the best value for a hyperparameters occurs in
the border of an interval, do a double check by
trying values beyond the boundary so that so you
don’t miss out on the optimal hyperparameter

● Don’t do grid search, always prefer random search 76

Impact of deep in ILSVRC

77

ALEXNET - The gamechanger

Impact of deep in ILSVRC

78

ALEXNET - The gamechanger

Alexnet architecture details
It consists of 8 layers - 5 convolutional layers and
3 fully connected layers.

79

Residual Networks
Counterintuitively, error increases with
increase in depth beyond a certain point

80

The idea of skip connection
suggests that it is easier to learn
minor modifications to identity
functions

Google net

● The biggest contribution from
google net was the introduction of
inception module - A module where
features from multiple layers can be
mixed together

● Inception provides a way for
combining local and global features

81

Spatial Transfer Networks (STN)
● Introduces a network to make images invariant to rotations and translations
● It consists of a localisation network that computes the spatial transformation,

creation of sampling grid through a grid generator and a sampler which warps
the input based on the generated grid.

● Link for STN

82

https://drive.google.com/file/d/0B1nQa_sA3W2iN3RQLXVFRkNXN0k/view

Autoencoders
● Autoencoder is a network which is typically used to learn a fixed number of

features that can best represent the data
● This type of networks can be used for data compression

83

Recurrent Neural Network

Unlike feedforward neural network, RNN can have loops.

Useful for Sequential inputs.

Useful in applications where memory about the past output can play a role in
predicting the current output

Visualization examples
Techniques:-

1. Layer activations
a. Visualise the activations of the network. When we use ReLU, the activations starts out relatively blobby but

spreads out during learning.
b. Some activations may be all zero indicating high learning rate.

2. Visualise weights
a. Weights are the most interpretable on the first layer, which is looking at the input pixels directly.
b. Weights from other layers can be visualised too. They will usually form some smooth patterns. Noisy patterns

indicate that the network has not probably learnt well and needs to trained longer.
3. Retrieving images that maximally excite a neuron.

a. A large dataset of images is taken. The images which fired maximally for some neuron are recorded. Hence
this will give us a good insight into what the neuron has learnt.

b. One problem with this is that each Relu neuron might not learn something sematic. It is the combination of
several Relu neurons that learn something semantic.

 85

Visualization examples
4. Low dimensional embedding :-

Several visualisation techniques have been proposed which convert the image
vectors in high dimensional space to a 2-D space, preserving the pairwise
distance between any two points. The best known technique is tsne- Embedding

5.Occluding parts of image (for classification):-

We can set a patch of the image to be all zeros. We can iterate position of the
patch throughout the image and record the probability of correct class label as a
function of position. A 2-dimensional heat map can be produced through such
procedure. The probability should reduce considerably at position where the actual
object is placed in the image.

86

Be careful with DATA

87
Nuts

?

Bolts

Challenges (GPU for Training)

88

