

## Vision for a Better World

# Computer Vision with <br> Machine Learning 

## PSG Tech - 2018




Dhivakar
Computer Vision and Machine Learning,
Soliton Technologies


Senthil
Computer Vision and Machine Learning,
Soliton Technologies


Measurement

## \& Automation

Labview, Test Stand


Embedded
Systems
FPGA, Embedded Systems, DSP, Device Driver


Computer
Vision
Computer Vision, Machine Vision, Machine Learning


Data Analytics

Statistics, Machine
Learning, Big Data, NLP, Text Analysis, Predictive Analytics

## Web

Technologies
Node.js, HTML, CSS, UI Design, C\#, Java




- ARM with 1.2 GHz processing power
- 8 GB Internal Flash memory and 1GB DDR3 RAM
- Powerful open source image processing library
- Option to interface 3 Image sensors (Parallel + MIPI)
- GIGE Ethernet, HDMI and Touch screen support
- GSM/4G support, WIFI/Bluetooth/Audio can be integrated
- RS232/CAN support to interface with PLCs
- Industrial standard with IP67 (Waterproof)
- Miniature design: $63.5 \times 63.5 \times 38 \mathrm{~mm}$
- Interchangeable Lens
- Deep Learning Support



## 3D Reconstruction

Object Recognition

## Object Tracking

Depth Estimation

| Features/ | 3D Vision |
| :---: | :---: |
| Dimn Reduction |  |
| LBP, PCA, Sparse-PCA, |  |
| Isomap, Kernel-PCA, |  |
| MDS | Structured Light, |
| Time of Flight, |  |
| Reconstruction, |  |
| Structure from Motion |  |



Project : Gauge Reader


Project : 3D Scanner


Project : HCR


Project : Collision Detection


Project: Augmented Reality


Product: 3D Pose Estimation

- We are in Machine Vision for the past 10+ years
- Deployed many multi-year projects in production
- First Smart camera from India
- Computer Vision
- 3D Vision
- Team of 12+ Engineers


Computer Vision \& Machine Vision

Soliton Technologies


## Humans in the World

- Perceive -> Reason -> Control

Speech,
Vision, Touch Orientation.


## Human Vision

- Importance of vision for humans
- $30 \%$ of cortex used in vision
- McGurks Effect
- Decision makings
- McGurk's Effect
- Bouba / Kiki Experiment



## Interconnections



Kiki


Bouba

## Human Vision

- MultiSensory, High Resolution, Immersive Inner Movie
- Arguable one of the most Complex Machines
- Color Stereo Pair: $768 \times 576$ @ 30 fps : $80 \mathrm{MB} / \mathrm{s}$
- $10^{11}$ Neurons
- $10^{14}-10^{15}$ Synapses
- Eons of evolution, learning right priors
- Continuous flow of perception (with very few glitches)
- Perception
- No eye inside an eye: just stream of electrical impulses : Shades
- Brain combines them all to create our reality based on past experiences: Sound Prediction \& McGurks
- It is Brain's best guess of what is out there: Ames Room



## Your Brain is Cheating you



## What is Computer Vision?

Ability of Computers to See and Understand from the Scene

- Saying if an object is present in the image
- Saying what are all the things present in the image
- Describe the scene


## Computer Vision

- Image Processing, Computer Vision, Machine Vision
- Low Level: Edge Detection, Filtering..
- Mid Level: Segmentation..
- High Level: Object Detection, Stereo



## Computer Vision in Games



## Image Captioning



A person riding a motorcycle on a dirt road.


A group of young people playing a game of frisbee.


A herd of elephants walking across a dry grass field.

## Deep Learning + Computer Vision in Prisma

Style transfer


## Structure from Motion



Texture-mapped model
Shaded model

(Images courtesy of Luc Van Gool)

## Seam Carving



## In Movies



- Bullet Time special-effect in The Matrix is an example of the application of SFM ideas.
- Linear array of cameras replaces moving camera.
- Green screen makes segmentation easy.


## In International Games



## Goals

Help building an understanding of How to solve real world problems using Computer Vision with ML and DL

Understand the Math and appreciate the beauty of it as opposed to simply

## Machine Learning

Evolution of ML. Understanding how Machines learn. Limitations

## Computer Vision

Digital image capture, storage and process. Traditional Object detection and Limitations

We can't teach you Vision in a 2 day Workshop. But we will try our best to Motivate you towards learning
Applying the technology

## Euclidean Geometry?



## Projective Geometry



## Motivation example - Euclidean Transform



## Shapes are Complicated. Focus on Points



## Transformation Matrices



Let's represent a point $x, y$ in polar coordinates
$x=r \cos \phi y=r \sin \phi$
Let $\theta$ be the rotation angle.Let $x^{\prime}$ and $y^{\prime}$ represent the rotated point. The rotated point can be expressed in polar coordinates as

$$
\begin{aligned}
x^{\prime} & =r \cos (\theta+\phi) \\
& =r \cos \theta \cos \phi-r \sin \theta \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime} & =r \sin (\theta+\phi) \\
& =r \sin \theta \cos \phi+r \cos \theta \sin \phi \\
& =x \sin \theta+y \cos \theta
\end{aligned}
$$

$=x \cos \theta-y \sin \theta$

## Can we represent the same in Matrix?

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right]
$$

Lets see how we can represent translation

But can we represent both translation and rotation in a single compact matrix, rather than splitting into a matrix multiplication and vector translation?


## Solution - Homogeneous Coordinates

Lets represent each point by appending a one


## Solution - Homogeneous Coordinates

| $\cos \theta$ | $-\sin \theta$ | $t x$ |
| :--- | :--- | :--- |
| $\sin \theta$ | $\cos \theta$ | $t y$ |
| 0 | 0 | 1 |

## Class I: Euclidean

$$
\begin{gathered}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
\varepsilon \cos \theta & -\sin \theta & t_{x} \\
\varepsilon \sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad \begin{array}{l}
\text { (iso=same, metric=measure) } \\
\varepsilon= \pm 1 \\
\text { orientation preserving: } \varepsilon=1 \\
\text { orientation reversing: } \varepsilon=-1
\end{array} \\
\mathbf{x}^{\prime}=\mathbf{H}_{E} \mathbf{x}=\left[\begin{array}{cc}
\mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
\end{gathered}
$$

3DOF (1 rotation, 2 translation)
special cases: pure rotation, pure translation
Invariants: length, angle, area

## Ability to Scale up or Scale down



$$
\left(\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
s_{x} x \\
s_{y} y \\
1
\end{array}\right) .
$$

## Ability to Scale up / Scale down

$\left[\begin{array}{lll}\mathrm{s} & 0 & 0 \\ 0 & \mathrm{~s} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{l}\mathrm{sx} \\ \mathrm{sy} \\ 1\end{array}\right]$


## Class II: Similarities

$$
\begin{array}{r}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{x} \\
s \sin \theta & s \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad \begin{array}{l}
\text { (isometry }+ \text { scale) } \\
\text { also known as equi-form (shape } \\
\text { preserving) }
\end{array} \\
\mathrm{x}^{\prime}=\mathbf{H}_{S} \mathrm{x}=\left[\begin{array}{cc}
s \mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
\end{array}
$$

4DOF (1 scale, 1 rotation, 2 translation)
metric structure = structure up to similarity (in literature)
Invariants: ratios of length, angle, ratios of areas, parallel lines

## For Non-Uniform scaling?



## $\left[\begin{array}{lll}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$ $[=][][]=[=1$

## Class III: Affine transformations

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$



$$
\mathrm{x}^{\prime}=\mathbf{H}_{A} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x}
$$

$\mathrm{x}^{\prime}=\mathbf{H}_{A} \mathrm{x}=\left[\begin{array}{cc}\mathbf{A} & \mathrm{t} \\ 0^{\top} & 1\end{array}\right] \mathrm{x}$

$$
\mathbf{A}=\mathbf{R}(\theta) \mathbf{R}(-\phi) \mathbf{D} \mathbf{R}(\phi) \quad \mathbf{D}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

6DOF (2 scale, 2 rotation, 2 translation)
non-isotropic scaling! (2DOF: scale ratio and orientation)
Invariants: parallel lines, ratios of parallel lengths, ratios of areas

## General Affine Transform

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \text { rotation }\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \text { translation }} \\
& {\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \text { scaling }\left[\begin{array}{lll}
1 & s & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { skew }} \\
& {\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right] \text { general affine transform }}
\end{aligned}
$$

## Projective Transform

All transforms learnt till now are planar transform
What happens when we try to map between two different planes
Why is this necessary? Why is it necessary to learn a transform that maps between planes?

## Optical illusions - Inferring 3D world from 2D planes





## Pinhole Camera Model

- Simplest model of imaging process


Ref: "A Flexible New Technique for Camera Calibration", Zhengyou Zhang, Technical Report, August 13, 2008

## Pinhole Camera Model- Another Representation (Use of virtual planes) <br> 



## How human eye perceives the world?



## What is lost in Projective transforms?

Parallel lines meet


## Distortion of Shapes



## Construction of Perspective images

https://www.geogebra.org/classic

## What is preserved in Projective Transform?

Perspective projection


## Significance of Previous statement



Every family of parallel lines should be changed into a family of intersecting lines and as a consequence a few of the intersecting lines may change into parallel lines

All previous transforms were dealing with points and hence were mathematically easy to derive.

This kind of projective transform actually requires one to analyse lines and hence mathematically involved?

Can we find an easier way out?

## Ideal points and line at infinity

Let us assume that all parallel lines actually meet at an infinite point called the "ideal point".

All the ideal points lie on a line called the "line at infinity"
Then our transformation should focus on transforming the "ideal points" into real points

This gives rise to the two axioms of projective geometry
Axiom 1: Any two distinct points are incident with exactly one line
Axiom 2: Any two distinct lines are incident with at least one point

## Supreme power that Projective transform bestows

Map an ideal point into a real point ( Thus transforms parallel lines into intersecting lines)

Map the line at infinity into a "horizon line"

## How to realise ideal points in practice?

Solution: Homogeneous coordinates
$(2,4,1)$----> $(2,4)$
$(4,8,2)$-----> $(2,4,1)$----->> $(2,4)$
Ideal points can be represented in the form ( $\mathrm{x}, \mathrm{y}, 0$ ). A set of parallel lines are hypothesised to meet in an ideal point

Now we should have the ability to transform ( $\mathrm{x}, \mathrm{y}, 0$ ) into a real point ( $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ) where c ! $=0$

## Class IV: Projective transformations

$$
\left[\begin{array}{cc}
\mathrm{A} & \mathbf{t} \\
\mathbf{v}^{\top} & v
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)=\binom{\mathrm{A}\binom{x_{1}}{x_{2}}}{v_{1} x_{1}+v_{2} x_{2}}
$$

$\mathrm{x}^{\prime}=\mathbf{H}_{P} \mathrm{x}=\left[\begin{array}{cc}\mathbf{A} & \mathrm{t} \\ \mathrm{v}^{\top} & \mathrm{v}\end{array}\right] \mathrm{x} \quad \mathrm{v}=\left(v_{1}, v_{2}\right)^{\top}$

$$
\left[\begin{array}{cc}
\mathrm{A} & \mathbf{t} \\
\mathbf{0}^{\mathrm{T}} & 1
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)=\binom{\mathrm{A}\binom{x_{1}}{x_{2}}}{0} .
$$

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)
Action non-homogeneous over the plane
Invariants: cross-ratio of four points on a line (ratio of ratio)

## Overview Transformations

Euclidean
3dof

lengths, areas.


Affine
6dof
$\left[\begin{array}{ccc}a_{11} & a_{12} & t_{x} \\ a_{21} & a_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right] \square \square$

Ratios of lengths, angles. The circular points $\mathrm{I}, \mathrm{J}$

Parallelism, ratio of areas, ratio of lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids). The line at infinity $I_{\infty}$

Projective 8dof


## Projective Distortion



## Hands - On

## Demo

1. Geometric transforms ipython notebook
2. Projective transform image plane change
3. 

## Removing projective distortion


select four points in a plane with known coordinates

$$
\begin{aligned}
& x^{\prime}=\frac{x_{1}^{\prime}}{x_{3}^{\prime}}=\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}} \quad y^{\prime}=\frac{x_{2}^{\prime}}{x_{3}^{\prime}}=\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}} \\
& x^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=h_{11} x+h_{12} y+h_{13} \quad\left(\text { linear in } h_{i j}\right) \\
& y^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=h_{21} x+h_{22} y+h_{23}
\end{aligned}
$$

(2 constraints/point, 8DOF $\Rightarrow 4$ points needed)

## Application - License plate recognition



61서 4555


46수 4482

## Image Stitching



## Image Stitching

1. Repeat for all images
a. Detect 2D Features points in both the images
b. Find match between 2D features of both images
c. Find Homography between two images using matched points (Do RANSAC to reduce effect of outliers)
d. Warp the image w.r.t any particular one image
e. Merge the images
2. Color Blend the final image



## Image Representation



## Transperant Images



Use of Alpha Channel to create Transparent Image


Original Image RGB - 24 bpp


Alpha Channel
A-8bpp


Transparent Image RGBA - 32 bpp

## Different Color Spaces



## Basic terminologies in images

Brightness - Determines the intensity of the color presented by a pixel in a color image

Contrast - The difference between the lightest and darkest regions of an image.
Saturation - The component of the HSV color model that controls the amount of white mixed into the hue.

## Histograms

Histogram is a measure of the frequency of occurrence of each pixel value in the image




## Histogram equalisation

Histogram equalization is a technique for adjusting image intensities to enhance contrast. A very good preprocessing step to reduce the effect input image lightness varaiations

New Image


New Histogram


Old image


Old Histogram


## Thresholding

1. Converts a grayscale image to a binary image by thresholding all values below the threshold (a max limit) to zero and all values above the threshold (a max limit) to the highest value
a. Binary
b. Binary inverted
c. Adaptive


## Masking a color in an image

1. Find the desired range for the color in HSV
2. Get / Convert image to HSV format.
3. Keep all pixels within the range as it is and replace other pixels by zero


## Contour detection

1. Contour is a curve joining all points in a boundary.
2. Contour are useful for shape analysis, object detection and analysis



## Convolution

| $0_{2}$ | 0 | $0_{1}$ | (1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0_{1}$ | 2 | 2 | 3 | 3 | 3 |  | , |
| $0_{0}$ | $0_{1}$ | 1 | 3 | 0 | 3 |  | 0 |
| 0 | 2 | 3 | 0 | 1 | S |  | 0 |
| , 0 | 3 | 3 | 2 | 1 | 2 |  | 0 |
| 0 | 3 | 3 | 0 | 2 | 3 |  | 0 |
|  |  |  |  |  |  |  |  |


| 1 | 6 | 5 |
| :---: | :---: | :---: |
| 7 | 10 | 9 |
| 7 | 10 | 8 |



## Smoothing

Box filter

1. Smoothing removes noise
2. Different types of smoothing are available

$1 / 9$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

a. Gaussian
b. Median
c. Average
d. Weighted average

> Gaussian filter

Weighted average
filter

$\frac{1}{16} \times$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

Median filter


## How to find gradients?

Derivatives of Discrete Functions

Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, its derivative is defined as

$$
\frac{d f}{d x}(x)=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon)-f(x)}{\epsilon}
$$



Derivative of $f$ is the slope of the tangent to the graph of $f$

## Derivatives of Discrete Functions



Derivatives of Discrete Functions


## What is an edge?

## What is an Edge?



An abrupt transition in intensity between two regions


Image X-Derivative vs X-Position



Image derivatives are high (or low) at edges

## How to find gradients?

Finite Differences

## Forward Difference

$$
\Delta_{+} f(x)=f(x+1)-f(x) \quad \text { right slope }
$$

## Backward Difference

$$
\Delta_{-} f(x)=f(x)-f(x-1) \quad \text { left slope }
$$

## Central Difference

$$
\Delta f(x)=\frac{1}{2}(f(x+1)-f(x-1)) \quad \text { average slope }
$$

## $y$-derivative using central difference:



$$
*\left[\begin{array}{c}
0.5 \\
0 \\
-0.5
\end{array}\right]=
$$



## How to find gradients?

Finite Differences

## Forward Difference

$$
\Delta_{+} f(x)=f(x+1)-f(x) \quad \text { right slope }
$$

## Backward Difference

$$
\Delta_{-} f(x)=f(x)-f(x-1) \quad \text { left slope }
$$

## Central Difference

$$
\Delta f(x)=\frac{1}{2}(f(x+1)-f(x-1)) \quad \text { average slope }
$$

## $y$-derivative using central difference:



$$
*\left[\begin{array}{c}
0.5 \\
0 \\
-0.5
\end{array}\right]=
$$



## But let's smooth our gradients a little.

Prewitt

Sobel
$H_{x}^{P}=\frac{1}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] *\left[\begin{array}{lll}0.5 & 0 & -0.5\end{array}\right]=\frac{1}{6}\left[\begin{array}{lll}1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1\end{array}\right]$

$$
H_{x}^{S}=\frac{1}{4}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] *\left[\begin{array}{lll}
0.5 & 0 & -0.5
\end{array}\right]=\frac{1}{8}\left[\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right]
$$

What is $\mathbf{H}_{\mathbf{y}}{ }^{\mathbf{P}}$ in Prewitt?

$$
H_{y}^{S}=\frac{1}{4}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] *\left[\begin{array}{c}
0.5 \\
0 \\
-0.5
\end{array}\right]=\frac{1}{8}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right]
$$

## Now we are set to calculate our gradients? Derivatives in 2 Dimensions

Given function $\quad f(x, y)$

Gradient vector

$$
\nabla f(x, y)=\left[\begin{array}{l}
\frac{\partial f(x, y)}{\partial x} \\
\frac{\partial f(x, y)}{\partial y}
\end{array}\right]=\left[\begin{array}{l}
f_{x} \\
f_{y}
\end{array}\right]
$$



Gradient magnitude
$|\nabla f(x, y)|=\sqrt{f_{x}^{2}+f_{y}^{2}}$

Gradient direction

$$
\theta=\tan ^{-1} \frac{f_{x}}{f_{y}}
$$

## Morphological operations

A collection of non-linear operations that is related to shape or morphology of features in an image.

There are four kinds of morphological operations in an image

1. Erosion
2. Dilation
3. Opening
4. Closing

## Erosion

The structuring element is superimposed on every pixel in the image. If all pixels within the structuring element are foreground, then the input pixel retains it value. If any pixel within the structuring element is background, then the input pixel is replaced by background.

(www.cs.princeton.edu/~pshilane/class/mosaic/)

## Dilation

The structuring element is superimposed on every pixel in the image. If all pixels within the structuring element are background, then the input pixel retains it value. If any pixel within the structuring element is foreground, then the input pixel is replaced by foreground.



## Opening

1. Erosion followed by dilations
2. Smooths contours and eliminates protrusions


## Closing

1. First dilate and then erode
2. This smooths sections of contours, fuses narrow breaks.


## Establishing correspondence

Local features: main components

1) Detection: Identify the interest points
2) Description :Extract feature vector descriptor surrounding each interest point.
3) Matching: Determine correspondence between descriptors in two views

## Properties of an interest point


"flat" region: no change in all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions

## Properties of Interest Point

Detectors

- Detect all (or most) true interest points
- No false interest points
- Well localized.
- Robust with respect to noise.
- Efficient detection

Some of the commonly used interest point detector

1. Harris point detector
2. Shi-Tomasi detector
3. Features from accelerated Segment Test (FAST)

## Feature descriptor

Feature descriptors
We know how to detect good interest points
Next question:
How to match image regions around interest points?
Answer: Need feature descriptors


Some of the commonly used interest point descriptors

1. Scale Invariant Feature Transform (SIFT)
2. Speeded Up Robust Features (SURF)
3. Binary Robust Independent Elementary Features (BRIEF)
4. Oriented FAST and rotated BRIEF (ORB)

## Feature matchers



Process of feature matching is as follows

1. Find the distance of each descriptors in the given image to every descriptor in the template image
2. Find the best match for each descriptor and its corresponding distance.
3. Remove the pairs which are below a threshold
4. Still a few bad pairs will be left. To work around this, use louse's ratio. Find the ratio of the distance of the first best match to the second best match. If the ratio $>0.6$, eliminate the pair


## Template matching



1. Given a template image and an input image to search for, search where exactly is the template image located in the input image.
2. Only translation and intensity variations are allowed. No other geometric operation is allowed
3. But how do we measure similarity between two patches of images.
4. Searching through the whole image might be time consuming?

## How do we measure similarity between two patches

The similarity between two patches g 1 and g 2 can be found by the following ways

1. Sum of squared differences (SSD)

$$
\sum\left(g_{2}(m)-g_{1}(m)\right)^{2}
$$

But these provide no invariance against brightness and contrast !!!!

1. Sum of absolute difference (SAD)

$$
\sum\left|g_{2}(m)-g_{1}(m)\right|^{2}
$$

1. Maximum of difference

$$
\operatorname{Max}=\max _{\mathrm{m}}\left|\mathrm{~g}_{2}(\mathrm{~m})-\mathrm{g}_{1}(\mathrm{~m})\right|
$$

## Solution - Normalised Correlation (Convolution) And Image pyramids

$$
\frac{\sum_{i=N}^{N}(F(i) I(x+i))}{\sqrt{\sum_{i=-N}^{N}(I(x+i))^{2}} \sqrt{\sum_{i=-N}^{N}(F(i))^{2}}} .
$$



## Day 1 - FN 2 (Basic Image Processing)

## Lunch Break

Feed yourselves well to feed the Machines more..!

## Day 1 - AN 1 (Basic Image Processing)



## Day 1 - AN 2 (Machine Learning Intro)

## Session II (ML)

$\rightarrow$ Object Classification
$\rightarrow$ Classification: Simple Version
$\rightarrow$ Features
$\rightarrow$ Classification: CV based
$\rightarrow \quad$ Linear classifiers
$\rightarrow$ SVM

## What is Machine Learning?

- Arthur Samuel (1959): Field of study that gives computers the ability to learn without being explicitly programmed
- A well-posed learning problem (1998): A computer program is said to learn from experience $E$ with respect to some task $T$ and some performance measure $P$, if its performance measure $P$, as measured by $P$, improves with experience E .


## What is Learning?

- Set of training samples: $\left[\mathrm{x}_{1}, \ldots . . \mathrm{x}_{\mathrm{n}}\right] \&\left[\mathrm{y}_{1}, \ldots . \mathrm{y}_{\mathrm{n}}\right]$
- Hypothesis function $(w 1 \times 1+w 2 \times 2=y)$
- Optimize the loss function
- Update / change the coefficients such that they minimize the error
- Perform till convergence
- Getting optimal values for ' $w$ ' is called learning
- Now for a new x , predict it's y


## Classification

Handwritten character Classification

Q: As a Human, how do I learn to classify?

No.0 / Answer:7, Predict:[7] No.1 / Answer:2, Predict:[2] No.2 / Answer:1, Predict:[1] No.3 / Answer:0, Predict:[0] No.4 / Answer:4, Predict:[4]


No.5 / Answer:1, Predict:[1] No.6/Answer:4, Predict:[4] No.7/Answer:9, Predict:[9] No.8/Answer:5, Predict:[5] No.9/Answer:9, Predict:[9]


No. 15 / Answer:5, Predict:[5] No. 16 / Answer:9, Predict:[9] No. 17 / Answer:7, Predict:[7] No. 18 / Answer:3, Predict:[3] No.19 / Answer:4, Predict:[4]


## Classification

1. Learn Patterns
2. Learn Rules


What is this?


## Simple Problem

How to classify a new image into any of the two categories?

Simplified Problem

- Conveyor Belt: 2D Image of Nut \& Bolt
- Supervised Learning Problem
- Train on available data
- Test on new data


Nut


Bolt

## Rules

We can classify a new image into any of these two categories by forming a set of rules.

Q: List down few rules by which we can classify

## Bolts

1. Longer
2. Thinner
3. Cylindrical in shape
4. More compact

## Nuts

1. Circular
2. Has cavity in the centre
3. Less area

## Features

In Machine Learning terms, we call them as features

## Low-level Features




HoG


SIFT

- Nut


## Data

The graph shows the distribution of data with respect to the below features

Features

1. Circularity
2. Compactness

Now, How can you classify the data?


## Classification

It is a simple if with two conditions

```
if Circularity > 55 and
Compactness < 90:
Nut
elif Circularity < 55 and Compactness > 90:
```

Bolt


## Complex Data

The Data becomes more complex to classify using a simple If Classifier

Now, How can you classify the data?


- Bolt
- Nut


## Decision Tree

- Non-parametric Supervised Learning
- Approximating data by a set of if-then-else decision rules
- Greedy algorithm
- Whitebox Model :)



## Decision Tree

Decision Tree generated for the Nuts and Bolts classification problem

## Cons

- May grow huge and hard to manage / visualize
- Problem of overfitting





## Let's Get our Hands Dirty

Closing Thoughts

What is the Cleaner way of Solving this problem?


- Bolt
- Nut


## Linear Classifier

A line should classify the data

But, How do I come up with a Line which separates both the classes of data optimally?


Now, the Session has
Ended.!


