

Soliton

Vision for a Better World

Deep Learning in Computer Vision

Anthill 2018

The team

Sumod

Founder, AutoInfer & CV & ML Architect, Soliton Technologies

Shivaraj

3D Vision Lead, Computer Vision and Machine Learning, Soliton Technologies

Dhivakar

Senior R&D Engineer, Computer Vision and Machine Learning, Soliton Technologies

Senthil

R&D Engineer, Computer Vision and Machine Learning, Soliton Technologies

3D Computer Vision

- Camera Calibration slides from day1
- Human Eye
- Stereo Camera Setup
- Epipolar Geometry
- Essential Matrix and Fundamental Matrix
- Depth Map Calculation from Stereo Images
- Essential Matrix Decomposition
- Triangulation from Two Views
- Triangulation from Multiple Views & Bundle Adjustment
- 3D Reconstruction Steps
- SLAM Introduction

Camera Model

Spatial relationship between sensor and pinhole (internal parameter)

Camera body configuration (extrinsic parameter)

Pinhole Camera Model - University of Pennsylvania | Coursera

Pinhole Camera Model

lision for a Better World

• Simplest model of imaging process

<u>Ref:</u> 1. "A Flexible New Technique for Camera Calibration", Zhengyou Zhang
 <u>https://in.mathworks.com/help/vision/ug/camera-calibration.html</u>
 <u>https://jordicenzano.name/front-test/2d-3d-paradigm-overview-2011/camera-model/</u>

Pinhole Camera Model- Another Representation

Homogeneous Representation

Modeling Camera Sensor Offset

Image Plane

$$\begin{pmatrix} X, Y, Z \end{pmatrix}^{T} \mapsto \begin{pmatrix} fX/Z + p_{x}, fY/Z + p_{y} \end{pmatrix}^{T}$$

$$\begin{pmatrix} p_{x}, p_{y} \end{pmatrix}^{T} \text{ principal point}$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_{x} \\ fY + Zp_{x} \\ Z \end{pmatrix} = \begin{bmatrix} f & p_{x} & 0 \\ f & p_{y} & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Modeling Camera Sensor Offset

Vision for a Better World

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{bmatrix} f_x & p_x & 0 \\ & f_y & p_y & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

• If pixel is skewed

Homogeneous form of point in image plane

$$= \begin{bmatrix} f_x & \text{s} & p_x & 0 \\ & f_y & p_y & 0 \\ & & 1 & 0 \end{bmatrix} \begin{vmatrix} X \\ Y \\ Z \\ 1 \end{vmatrix}$$

Homogeneous form of 3D World Point

U

V

W

Conversion of Coordinate System

• The pinhole model considers object points in camera coordinate system and the real world coordinate system might be different

• Transformation between two co-ordinate system is given by two factors – Rotation and Translation

Conversion of Coordinate System

• Point in camera coordinate system to point in world coordinate system

$$P_{c} = R_{3x3} P_{W} + T_{3x1}$$

$$\begin{pmatrix} P_{c} \\ 1 \end{pmatrix} = [R_{3x3} T_{3x1}] \begin{pmatrix} P_{W} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = K_{3x3} [R_{3x3} T_{3x1}] \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

[R T] define rotation and translation of camera these are called extrinsic parameters. It has 6 DOF

K is 3x3 matrix which defines internal parameters of the camera. It has 5 DOF

Application of Homography

- This equation can be solved if we know 3D points in real world and its corresponding 2D points in image
- Error chances are high when we use 3D points and 'ease of use' is low
- If all points are in single plane, it will become plane to plane transformation eliminating one of the dimension

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = K_{3x3} \begin{bmatrix} R_{3x3} & T_{3x1} \end{bmatrix} \begin{pmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$

Mapping between planes

Projection from one plane to another may be expressed by x'=Hx

Application of Homography

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = K_{3x3} \begin{bmatrix} R_{3x2} & T_{3x1} \end{bmatrix} \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$$

Plane to plan transformation (H)

$$p_{cam} = H_{3x3}P_{World}$$

$$H = K_{3x3} \begin{bmatrix} R_{3x2} & T_{3x1} \end{bmatrix}$$

Given set of corresponding points in real world plane (checkerboard) and point in image we can find the H and decompose H into K, R and T

Lens effect

Camera model doesn't consider lens effects

- Lens to focus light and converge
- Distortions
 - Radial Distortion shape of lens

Overview of Camera Calibration

- Object points known object plane
- Image points Detection of feature points in image
- Homography matrix using correspondence between image points and object points.
- Decompose homography matrix to K, R and T
- Follow the above procedure for large samples
- Result : Intrinsic matrix K

Human Eye - Stereo vision

Single View

Stereo Camera

Goal: Estimate camera motion and 3D scene structure from two views.

Epipolar Geometry

- The projections of a point X onto the two images are denoted by x₁ and x₂
- The optical centers of each camera are Denoted by o₁ and o₂
- The intersections of the line (o₁, o₂) with each image plane are called the epipoles e₁ and e₂
- The intersections between the epipolar plane (o₁, o₂, X) and the image planes are called epipolar lines l₁ and l₂
- There is one epipolar plane for each 3D point **X**

Depth Map Calculation from Stereo Images

Stereo setup diagram contains equivalent triangles.
 Writing their equivalent equations will yield us following result:

$$disparity = x - x' = \frac{BJ}{Z}$$

x and x' are the distance between points in image plane corresponding to the scene point 3D and their camera center. B is the distance between two cameras (which we know) and f is the focal length of camera (already known). So in short, above equation says that the depth of a point in a scene is inversely proportional to the difference in distance of corresponding image points and their camera centers.

21

The Epipolar Constraint

• We know that \mathbf{x}_1 (in homogeneous coordinates) is the projection of a 3D point **X**. Given known camera parameters (**K** = 1) and no rotation or translation of the first camera, we merely have a projection with unknown depth λ_1 . From the first to the second frame we additionally have a camera rotation **R** and translation **T** followed by a projection. This gives the equations:

$$\lambda_1 x_1 = X , \qquad \qquad \lambda_2 x_2 = RX + T .$$

- Inserting the first equation into the second and simplifying it, we get following equation: $(\mathbf{x}_2)^T[\mathbf{T}]_{\mathbf{x}} \mathbf{R} \mathbf{x}_1 = \mathbf{0}$ $[\mathbf{T}]_{\mathbf{x}} =$ translation skew-symmetric 3x3 matrix
- This provides a relation between the 2D point coordinates of a 3D point in each of the two images and the camera transformation parameters.

Essential Matrix and Fundamental Matrix

- In the previous equation the original 3D point coordinates have been removed. The matrix E = [T]_xR ∈ R^{3×3} is called the essential matrix. The epipolar constraint is also known as essential constraint or bilinear constraint.
- Geometrically, this constraint states that the three vectors o₁X, o₂o₁ and o₂X form a plane, i.e. the triple product of these vectors (measuring the volume of the parallelepiped) is zero:

volume =
$$(x_2)^T (T X R x_1) = (x_2)^T [T]_x R x_1 = 0$$

By transforming all image coordinates x` with the inverse calibration matrix K⁻¹ into metric coordinates x, we obtain the epipolar constraint for uncalibrated cameras: (x`₂)^TK^{-T}[T]_xRK⁻¹x`₁ = 0 ⇔ x`₂ F x`₁ = 0

The Eight-Point Linear Algorithm

- First we rewrite the epipolar constraint as a scalar product in the elements of the matrix E and the coordinates of the points x₁ and x₂. Let
 - $\mathbf{E}^{s} = (\mathbf{e}_{11}, \mathbf{e}_{21}, \mathbf{e}_{31}, \mathbf{e}_{12}, \mathbf{e}_{22}, \mathbf{e}_{32}, \mathbf{e}_{13}, \mathbf{e}_{23}, \mathbf{e}_{33})^{T} \in \mathbf{R}^{9}$ be the vector of elements of **E** and $\mathbf{x}_{i} = (\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i})$

 $a = (x_1x_2, x_1y_2, x_1z_2, y_1x_2, y_1y_2, y_1z_2, z_1x_2, z_1y_2, z_1z_2) \in \mathbb{R}^9$

• Then the epipolar constraint can be written as:

$$(x_2)^{T}Ex_1 = a^{T}E^{s} = 0$$

- For n point pairs, we can combine this into the linear system and solve for **E**^s
- Recover the displacement from the essential matrix decomposition into four possible solutions for rotation and translation.

Essential Matrix Decomposition

• The space of all essential matrices is called the **essential space**:

 $e \equiv \{ [T]_x R \mid R \in Special Orthogonal Matrix 3x3, T \in R^3 \} \subset R^{3 \times 3}$

• A nonzero matrix $E \in \mathbb{R}^{3\times 3}$ is an essential matrix if and only if E has a singular value decomposition (SVD) $E = U\Sigma V^T$ with

Σ = diag{ σ , σ , 0} for some σ > 0 and U, V ∈ SO(3).

Theorem (Pose recovery from the essential matrix): There exist exactly two relative poses (R, T) with R ∈ SO(3) and T ∈ R³ corresponding to an essential matrix E ∈ e. For E = UΣV^T we have:

 $([T]_{x1}, R_1) = UR_{Z} (+ \pi/2)\Sigma U^{T}, U(R_{Z})^{T} (+ \pi/2)V^{T},$ (1) $([T]_{x2}, R_2) = UR_{Z} (- \pi/2)\Sigma U^{T}, U(R_{Z})^{T} (- \pi/2)V^{T},$ (2)

• In general, only one of these gives meaningful (positive) depth values.

Triangulation from two views

- Estimate **R** and **T** from 4 possible solutions (select **R** and **T** that when substituted provides the positive depth)
- Use R and T to recover the depth of the 3D points and this give use the all 3D point corresponding to the each corresponding matches in the two images

A Basic Reconstruction Algorithm

- We have seen that the 2D-coordinates of each 3D point are coupled to the camera parameters R and T through an epipolar constraint. In the following, we will derive a 3D reconstruction algorithm which proceeds as follows:
- We assume that we are given a set of corresponding points in two frames taken with the same camera from different vantage points.
- We assume that the scene is static, i.e. none of the observed 3D points moved during the camera motion
- **Recover the essential matrix E** from the epipolar constraints associated with a set of point pairs.
- Extract the relative translation and rotation from the essential matrix E.
- Triangulate from using R and T to get 3D points

Reconstruction from two views

 Reconstructed point cloud from two views

Bundle Adjustment

- Multiple 3D points as seen from multiple viewpoints
- Same points is visible in all three views

Bundle Adjustment

	Point 1	Point 2	Point 3
lmage 1 Image 2 Image 3	$\mathbf{x}_{1}^{1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{1} \mathbf{t}_{1} \end{bmatrix} \mathbf{X}^{1}$ $\mathbf{x}_{2}^{1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{2} \mathbf{t}_{2} \end{bmatrix} \mathbf{X}^{1}$ $\mathbf{x}_{3}^{1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{3} \mathbf{t}_{3} \end{bmatrix} \mathbf{X}^{1}$	$\mathbf{x}_1^2 = \mathbf{K} \begin{bmatrix} \mathbf{R}_1 \mathbf{t}_1 \end{bmatrix} \mathbf{X}^2$ $\mathbf{x}_2^2 = \mathbf{K} \begin{bmatrix} \mathbf{R}_2 \mathbf{t}_2 \end{bmatrix} \mathbf{X}^2$	$\mathbf{x}_{2}^{3} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{2} \mathbf{t}_{2} \end{bmatrix} \mathbf{X}^{3}$ $\mathbf{x}_{3}^{3} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{3} \mathbf{t}_{3} \end{bmatrix} \mathbf{X}^{3}$

• A valid solution for R₁|t₁, R₂|t₂ and R₃|t₃ will be the one the minimize the reprojection error of the 3d points from multiple views:

 $min\Sigma_i\Sigma_i((x_i)^j - K[R_i|T_i]X^j)^2$ Optimization problem

Bundle Adjustment

Vision for a Better World

3D Reconstruction Steps

SLAM introduction

- Localization Determine the pose given a map
- Mapping Generate a map when pose is known
- SLAM key steps
 - Defined by an arbitrary coordinate system (initial pose)
 - Generate a map using sensors, and at the the same time compute pose
 - Map errors and pose estimate are correlated

SLAM algorithm

LSD SLAM

Advice on Applying ML / DL

• Case studies from Anthill Inside ppt

Disciplined Machine Learning

GAN

- <u>StackGAN</u>
- <u>Conditional GAN</u>
- InfoGAN
- Self Attention GAN
- Image-to-Image Translation with Conditional Adversarial Networks

Attention Networks

- Compositional Attention Networks
- Hierarchical Recurrent Attention Network for Response Generation

Session IV Practical DL

Agenda

- → Real World Problem Definition
- → AVA Dataset
- → Steps involved

Aesthetic Scoring

Problem statement: Given an image, Rate it based on the Aesthetics of the Image

AVA Dataset

- Large scale aesthetics dataset
- Each image is scored between 0 to 10 by multiple human reviewers

Img ref-https://ai.googleblog.com/2017/12/introducing-nima-neural-image-assessment.html

AVA Dataset

The most straightforward idea

- Try 10 class classification
- How to get a label for each image?
 - Max: choose the most voted score
 - Average: Calculate the average of all assigned scores
- How to sample data?
 - Sample 10k images for each class for training and keep the rest for testing.

Img Ref-https://www.vexels.com/vectors/preview/78830/idea-man-drawing

What architecture to choose?

- Can we try our own network?
- Can we try out a ready made architecture like ResNet, AlexNet or GoogleNet?
- Larger data \rightarrow deeper architecture
- Smaller data \rightarrow simple and shallow architecture

Image ref- https://isha.sadhguru.org/in/en/wisdom/article/confusion-and-clarity-on-the-spiritual-path

Why is the accuracy low?

Img ref-http://leesclassroom.global2.vic.edu.au/2014/03/19/maths-problem-solving-2/

Class imbalance

- **Class imbalance:** Unequal data for all classes. The model is biased against or towards certain classes.
- Training is biased and hence accuracy is also biased
- **Good practices:** Always visualise the data before spending too much time in training.

Poor progress so far. What else is the problem? Let's keep moving.

Img Ref -http://www.panditrajeevraosharma.com/business-problem.html

Critical analysis of the loss function

- Let's take a simple example to decode the problem with the loss function.
 - Example 1: Let's say the true label was 1 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 - But the predicted label had this probability distribution [0.05, 0, 0, 0, 0, 0, 0, 0.95, 0, 0, 0]
 - Binary cross entropy loss = $-\sum y_i \log y_i$

= -1 * log 0.05 = 1.31

- Example 2: Let's say the true label was 1 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- But the predicted label had this probability distribution- [.05, 0.95, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- Binary cross entropy loss = $-\sum y_i \log y_i$

= -1 * log 0.05 = 1.31

• Can you figure out the problem?

Img Ref - https://tenor.com/search/think-think-think-winnie-the-pooh-gifs

Is there a better loss function?

• Weighted L2 loss function

- Example : Let's say the true label was 1 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- But the predicted label had this probability distribution [0.05, 0, 0, 0, 0, 0, 0, 0.95, 0, 0, 0]

• Weighted L2 loss =
$$\sum W_i * |y_i - y'_i|$$
 where $w_i = |G.T index - i| + 1$

= 1 * 0.95 + 6 * 0.95 = 6.65

- Example: Let's say the true label was 1 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- \circ But the predicted label was 2 [.05, 0.95, 0, 0, 0, 0, 0, 0, 0, 0, 0]

• Weighted L2 loss =
$$\sum W_i * |y_i - y'_i|$$
 where $w_i = |G.T index - i| + 1$

= 1 * 0.05 + 2 * 0.95 = 1.95

Let's improve our model with this refined loss function

Img Ref - http://www.monday-8am.com/getting-better-with-age/

Let's visualise the data.

- Visualising data gives us some intuitions and exposes shortcomings of the current model
- Is my train data representative of the real time data.

Img Ref - http://www.stbrigidsms.wa.edu.au/newsletter/view/1/101-week-7-term-1

Let's visualise the data.

- Visualising data gives us some intuitions and exposes shortcomings of the current model
- Is my train data representative of the real time data.

Some observations and questions:-

- Aspect ratio of the image plays an important role
- Can we group classes together and reduce the number of classes?

Img Ref - http://www.stbrigidsms.wa.edu.au/newsletter/view/1/101-week-7-term-1

Seeing familiar curves. Lets try a deeper model

m (training set size)

KEEP CALM AND COLLECT MORE DATA

Credits: cs229, Andrew Y. Ng Img Ref - https://medium.com/@bakiiii/microsoft-presents-deep-residual-networks-d0ebd3fe5887

But is this data enough? If not, Augment the data

- What transformations on my image leave the label of the image unchanged?
- Apply all those transformations to augment the limited data set.

Img Ref -

https://www.researchgate.net/figure/Data-augmentation-using-semantic-preserving-transformation-for-SBIR_fig2 319413978

Can we add metadata?

- Tagging images with useful metadata could improve the accuracy
- What tags could be useful for AVA dataset??
 - Nature of the scene: Marriage, Playground, Forest etc..
 - Number of people in the image

Img Ref- https://www.dpconline.org/handbook/organisational-activities/metadata-and-documentation

Changing metrics

- Is our final accuracy metric in line with our training objective?
- Calculating accuracy in terms of predicting a correct label is misleading.
- Calculating how far is the predicted label from the true label may give a better measure.
- Better ways of generating data: Which of these statements is better for data collection?
 - Rate this image in a scale of 1-10.
 - How is the image? Excellent, good, average, below average, poor.

https://www.anirudhsethireport.com/visualise-and-be-motivated/

Overgeneralization

- Am I trying to solve a more complex problem than what is actually required?
- Does solving the more complex problem add more business value?
- An over generalising problem statement:
 - Which picture has a great aesthetics with story telling value?

https://sites.google.com/a/aguafria.org/block-2-logical-fallacies/home/overgeneralization-fallacy

Advice on Applying Machine Learning: War Stories

Sumod K Mohan

Anti-pattern 0 : Lott' Data & Al Magic Sparkle

- Let's use AI <insert favorite jargon instead>, everyone's using it
 - Trivial: Lets use AI suggest to do spell check, fit a line etc
 - Complex: Chatbot to converse on any given topic
 Google's Duplex does it: Narrow ability in specific skills
 - Complicated: Replace Doctor's (text, speech, viewing images, emotions etc)
- Lott' Data: Magic Sparkle of AI: Sprinkle and forget
- Can't we use txfer learning/unsupervised/RL: Nuances matter
- Low Data: Augment Data, Can't you use GAN's?
- Recent paper that solves prob y, why can't we use it for x

Anti-pattern 0 : Lott' Data & Al Magic Sparkle

- Gets your hands dirty & See beyond jargons
- Hold ML Sessions/Attend meetups to get a hang of nuances
- Trust the people whose hands are dirty but verify solving right problem
 - "...in research, in general the people that are doing it are in the best position to evaluate it, not the people that are supervising it ...": Robert Noyce, Co-Founder, Intel
- Hopefully this talk will help to make better decisions
- Understand ML/DL Software Lifecycle (next)

Anti-pattern 0 : Lott' Data & Al Magic Sparkle

Production

 \bigstar

Typical DL/ML System (supervised)

Symptoms

- Added new data, system gone haywire
- Model on knife-edge, minor tweak all hell breaks loose
- Long Repeated Iteration Loops for Developing models
 - Initially took 4 months, more data again took 5 months, more data...
- Model gives crazy results every now and then

- Look at your data
- Kosher: Nothing off in Input and Output
- Do a simple walk through each stage
- Can you overfit your model (98-99%+ training)
- Visualize label/output distribution: Is it nearly equal, if not then handling uneven classes
- Improving Beyond (large data issues)
- Tools to effectively view large quantity of data

- Look at your data
- Kosher: Nothing off in Input and Output
- Do a simple walk through each stage
- Can you overfit your model (98-99%+ training)
- Visualize label/output distribution: Is it nearly equal, if not then handling uneven classes
- Improving Beyond (large data issues)
- Tools to effectively view large quantity of data

- Look at your data
- Kosher: Nothing off in Input and Output
- Do a simple walk through each stage
- Can you overfit your model (98-99%+ training)
- Visualize label/output distribution: Is it nearly equal, if not then handling uneven classes
- Improving Beyond (large data issues)
 - Tools to effectively view large quantity of data
 - Look at critical regions & Inspect your model: CAM/LIME
- Is it really confusing or learning unrelated patterns (Bach vs Mozart)
- Synthesize or Augment or Simulate
 - GANs
 - Simulate

LIME: Locally Interpretable Model Agnostic Explanations

- Look at your data
- Kosher: Nothing off in Input and Output
- Do a simple walk through each stage
- Can you overfit your model (98-99%+ training)
- Visualize label/output distribution: Is it nearly equal, if not then handling uneven classes
- Improving Beyond (large data issues)
 - Tools to effectively view large quantity of data
 - Look at critical regions & Inspect your model: CAM/LIME
 - Is it really confusing or learning unrelated patterns (Bach vs Mozart)
- Synthesize or Augment or Simulate
 - GANs
 - Simulate

GAN Gen.

Driverless: Simulator

Disciplined ML/DL Training

Anti-pattern 2 : Metrics (good, bad, ugly)

- Incorrect Metrics
- Bad Loss Function
- Non uniform dist of labels

Loss & Metrics

Aesthetic Scoring Problem

L055.	10	

To optimize your model Lose:

Actual	4:Wow	4:Wow	4:Wow	4:Wow
Pred	1: Bad	2: Nice	3:Good	4:Wow
Loss A	1	1	1	0
Loss B	3	2	1	0
Loss C	9	4	1	0

To judge performance

Loss & Metrics

Aesthetic Scoring Problem

	Loss: To optimize your model									
	Actual	4 (Cat)	4 (Cat)	4 (Cat)	4 (Cat)					
	Pred	1 (Dog)	2 (Pig)	3 (Man)	4 (Cat)					
	Loss A	1	1	1						
	200071		· ·	<u> </u>						
	Loss B	3	2	1	0					

4

Metric:

9

Loss C

To judge performance

1

0

...

Anti-pattern 2 : Metrics (good, bad, ugly)

- Incorrect Metrics
- Bad Loss Function
- Bad distribution of data

Test Data Distribution

Anti-pattern 2 : Metrics (good, bad, ugly)

- Incorrect Metrics (Harsh's Talk)
- Bad Loss Function
- Bad distribution of data
- No Context: Face Recog of 98 %
 - On benchmark + already detected
 - Detection & Localization vs Recog vs
 Verification
- Under very different conditions
- Incorrect Maths
- Not accounting for info leaks

Detection & Loc Is there & Where are faces

Authentication/Verify Is she Madhuri Dixit ?

Recognition Who is this ?

100 to 1000

Anti-pattern 2 : Metrics (good, bad, ugly)

- Incorrect Metrics
- Bad Loss Function
- Bad distribution of data
- No Context: Face Recog of 98 %
 - On benchmark + already detected
 - Detection & Localization vs Recog vs
 Verification
- Under very different conditions
- Incorrect Maths: Loss/Metrics
- Not accounting for info leaks

Anti-pattern 3 : Divide and Conquer

- Better Interpretability & Easier to debug
- Easier to improve
- Distributed Development / Dedicated Personal

Anti-pattern 3 : Divide and Conquer

0.95 * 0.95 * min (0.95, 0.90, 0.95) * 0.95 = 0.81

- Error gets accumulated at each stage
- Not independent: Error cascades

Anti-pattern 3 : Divide and Conquer

- Error gets accumulated at each stage
- Not independent: Error cascades
- Not independent: Improvement Cascades Needed (War Story)
- Happens in DL too: Two stage detector, CRF on top, CNN-RNN etc

- Sales: More general it is, easier to sell
- Sales: high accuracy & fast (30fps) solution
- Engg: accurate & faster:

Expensive to develop such a system (many man months)

- Computer Vision: Types of variations
 - Scale, Rotation & 3D Rotation, Translation
 - Intra-Class variance: smaller better
 - Inter-Class variance: larger better
 - Lighting: Low light vs Specular Reflection etc
 - Occlusion

- Sales: More general it , easier to sell
- Sales: high accuracy & fast (30fps) solution
- Engg: accurate & faster
- War Story: Form Reading Page Alignment
 - Alignment: 0-360 Degrees
 - 4-5 Mo: matched marker-descriptor
 - Accuracy: 98.8+%

- Sales: More general it (seems), easier to sell
- Sales: high accuracy & fast (30fps) solution (for demos)
- Engg: accurate & faster
- War Story: Form Reading Page Alignment
 - Alignment: 0-360 Degrees
 - 4-5 Mo: matched marker-descriptor
 - Accuracy: 98.8+%
 - Real world scanner: 99.99%+
- Clear understanding of product use-case
- Generality is expensive, choose wisely (Engg Comm)

Anti-pattern 5 : Testing, Production etc

- Managers: Understand what problem team is really solving
- Managers: Engage in deeper conversations, allow it ok for engineers to **not** know/understand
 None of us know why these really works, though we do have some intuitions
- Site-Testing: Understand users creating your data
- UI/UX causing bad data (words like intermediate, exceptional)
- Children Binging behaviours (measures to reduce)
- Good UI/UX to create quality data (to remind users/annotators)
- Prod != Prototype
- Human in the loop

Anti-pattern 7 : Over-theorize

 \bigstar

Build and Iterate;

Ph.D's and Math inclined more prone to this (self-confession :)

Based on Andrew Ng '2007 and Papadimitriou, 1995

Takeaways

 \bigstar

• Managers et al

- Not Magic Sparkle: Systematic, Disciplined development, don't over trivialize,
- Importance of Clean Data & Representative Data
- Trust your engineers instincts but ensure they are solving the right tight problem
- Understand Prototype != Production
- Balance General Enough vs Over General (Over greedy is bad)
- Testing: Importance of UI/UX, test often/test early, engineers must see what users does
- Man in the loop: At-least Initially, faster to iterate
- Don't over-theorize

Takeaways

- DL Engineers et al
 - Garbage in Garbage Out: View your data, Systematic Debugging, Build Tools, Simulate/Augment
 - **Disciplined ML:** Different data sets
 - Good, Bad, Ugly Loss and Metrics: Context of publ. results, correct dist?, same conditions, Info leaks
 - **Divide and Conquer**: Interpretability and Error/Improvement Cascades
 - Keep **up-to date with tools**: spacy, keras, etc...

Thanks!

AutoInfer Technologies 14, 12th Cross Road, Vasanth Nagai Bangalore 560052, India sales@autoinfer.com

Soliton Technologies 683, 15th Cross Road, 2nd Phase, J. P. Nagar, Bangalore 560078, India vision@solitontech.com

Extra Slides

ML System Life Cycle

Takeaways

- No Magic Sparkle: Systematic, Disciplined development,
- Defining Business Problem
 - Assumptions can you make: Day/Night, 10K Objects
 - Cut Slack but solve only what is needed
- Defining ML Problem
 - Dividing into sub-problems (improves interpretability)
 - Shannon's Successful Researcher (Error Propagation)
- Modelling
 - **Disciplined ML**: Dev, Valid, Test (datasets)
 - Systems Thinking: Handling
 - Metrics: Good Metrics, Bad Metrics, Ugly Metrics & What to optimize (segm eg)
- Understand Limitation, Incorporate Rich Data, Iterate with real data as soon as possible
 - Setting Expectations

Soliton NEO Architecture

Soliton Vision Artist

Visualization - Class Activation Maps

8	8		Цy	60	57
3 as 2	2	3	4 as 6	6	4
в	3	\^	ý	ŝy -	41
3 as 0	0	3	4 as 6	6	4
۲	°.		2	e	* 4
7 as 4	4	7	3 as 7	7	3

Confidential and Proprietary : Do Not Distribute

Visualization - Class Activation Maps

Confidential and Proprietary : Do Not Distribute

Visualization - Class Activation Maps

ઉ		•	4y	•	
3 as 0	0	3	4 as 6	6	4
8	2	$\mathbf{\Sigma}$	Ý	-	2
3 as 2	2	3	4 as 6	6	4
۲			2	×	2
7 as 4	4	7	3 as 7	7	3

Confidential and Proprietary : Do Not Distribute