

Vision for a Better World

Deep Learning in

 Computer Vision

 Computer Vision}

Anthill 2018

The team

3D Computer Vision

- Camera Calibration - slides from day1
- Human Eye
- Stereo Camera Setup
- Epipolar Geometry
- Essential Matrix and Fundamental Matrix
- Depth Map Calculation from Stereo Images
- Essential Matrix Decomposition
- Triangulation from Two Views
- Triangulation from Multiple Views \& Bundle Adjustment
- 3D Reconstruction Steps
- SLAM Introduction

Demo of SLAM

Camera Model

Lens configuration (internal parameter)

Spatial relationship between sensor and pinhole (internal parameter)

Camera body configuration (extrinsic parameter)

Pinhole Camera Model

- Simplest model of imaging process

Ref: 1. "A Flexible New Technique for Camera Calibration", Zhengyou Zhang
2. https://in.mathworks.com/help/vision/ug/camera-calibration.html
3. https://jordicenzano.name/front-test/2d-3d-paradigm-overview-2011/camera-model/

Pinhole Camera Model- Another Representation

Homogeneous Representation

3D World Point $(X, Y, Z)^{T} \mapsto(f X / Z, f Y / Z)^{T}$

Modeling Camera Sensor Offset

Image Plane

$$
\begin{gathered}
(X, Y, Z)^{T} \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)^{T} \\
\left(p_{x}, p_{y}\right)^{T} \text { principal point }
\end{gathered}
$$

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{x} \\
Z
\end{array}\right)=\left[\begin{array}{cccc}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Modeling Camera Sensor Offset

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left[\begin{array}{llcc}
f_{x} & & p_{x} & 0 \\
& f_{y} & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

- If pixel is skewed

Homogeneous form of point in image plane

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left[\begin{array}{cccc}
f_{x} & s & p_{x} & 0 \\
& f_{y} & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Homogeneous form of 3D World Point

Conversion of Coordinate System

- The pinhole model considers object points in camera coordinate system and the real world coordinate system might be different

- Transformation between two co-ordinate system is given by two factors Rotation and Translation

Conversion of Coordinate System

- Point in camera coordinate system to point in world coordinate system

$$
P_{c}=R_{3 \times 3} P_{W}+T_{3 \times 1}
$$

$$
\binom{P_{c}}{1}=\left[\begin{array}{ll}
R_{3 \times 3} & T_{3 \times 1}
\end{array}\right]\binom{P_{W}}{1}
$$

$\left.\begin{array}{l}\begin{array}{l}\text { K is } 3 \times 3 \text { matrix which defines } \\ \text { internal parameters of the } \\ \text { camera. It has 5 DOF }\end{array} \\ w\end{array}\right)\left(\begin{array}{c}u \\ v \\ w\end{array}\right)=K_{3 \times 3}\left[\begin{array}{ll}R_{3 \times 3} & T_{3 \times 1}\end{array}\right]\left(\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right)$
[RT] define rotation and translation of camera these are called extrinsic parameters. It has 6 DOF

Application of Homography

- This equation can be solved if we know 3D points in real world and its corresponding 2D points in image
- Error chances are high when we use 3D points and 'ease of use' is low
- If all points are in single plane, it will become plane to plane transformation eliminating one of the dimension

$$
\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)=K_{3 \times 3}\left[\left.\begin{array}{ll}
R_{3 \times 3} & T_{3 \times 1}
\end{array} \right\rvert\, \begin{array}{c}
X \\
Y \\
0 \\
1
\end{array}\right)
$$

Mapping between planes

Projection from one plane to another may be expressed by $x^{\prime}=H x$

Application of Homography

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=K_{3 \times 3}\left[\begin{array}{ll}
R_{3 \times 2} & T_{3 \times 1}
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
1
\end{array}\right)
$$

Plane to plan transformation (H)

$$
p_{\text {cam }}=H_{3 \times 3} P_{\text {World }}
$$

$$
H=K_{3 \times 3}\left[\begin{array}{ll}
R_{3 \times 2} & T_{3 \times 1}
\end{array}\right]
$$

Given set of corresponding points in real world plane (checkerboard) and point in image we can find the H and decompose H into K, R and T

Lens effect

Camera model doesn't consider lens effects

- Lens - to focus light and converge
- Distortions

- Radial Distortion - shape of lens

- Tangential Distortion - image sensor not parallel to lens

Sensor
Ref:http://zone.ni.com/reference/en-XX/help/370281U-01/nivision/vbasics/choose_a_calibration_ 16

Overview of Camera Calibration

- Object points - known object plane
- Image points - Detection of feature points in image
- Homography matrix using correspondence between image points and object points.
- Decompose homography matrix to K, R and T
- Follow the above procedure for large samples
- Result : Intrinsic matrix K

Human Eye - Stereo vision

Single View

Stereo Camera

Goal: Estimate camera motion and 3D scene structure from two views.

Epipolar Geometry

- The projections of a point \mathbf{X} onto the two images are denoted by \mathbf{x}_{1} and \mathbf{x}_{2}
- The optical centers of each camera are Denoted by \mathbf{o}_{1} and \mathbf{o}_{2}
- The intersections of the line $\left(\mathbf{0}_{1}, \mathbf{o}_{2}\right)$ with each image plane are called the epipoles \mathbf{e}_{1} and \mathbf{e}_{2}
- The intersections between the epipolar plane $\left(\mathbf{o}_{1}, \mathbf{o}_{2}, \mathbf{X}\right)$ and the image planes are called epipolar lines I_{1} and I_{2}

- There is one epipolar plane for each 3D point \mathbf{X}

Depth Map Calculation from Stereo Images

- Stereo setup diagram contains equivalent triangles.

Writing their equivalent equations will yield us following result:

$$
\text { disparity }=x-x^{\prime}=\frac{B f}{Z}
$$

- $\quad x$ and x^{\prime} are the distance between points in image plane corresponding to the scene point 3D and their camera center. B is the distance between two cameras (which we know) and f is the focal length of camera (already
 known). So in short, above equation says that the depth of a point in a scene is inversely proportional to the difference in distance of corresponding image points

The Epipolar Constraint

- We know that \mathbf{x}_{1} (in homogeneous coordinates) is the projection of a 3D point X. Given known camera parameters $(K=1)$ and no rotation or translation of the first camera, we merely have a projection with unknown depth $\boldsymbol{\lambda}_{1}$. From the first to the second frame we additionally have a camera rotation \mathbf{R} and translation \mathbf{T} followed by a projection. This gives the equations:

$$
\lambda_{1} \mathrm{x}_{1}=\mathrm{X}, \quad \lambda_{2} \mathrm{x}_{2}=\mathrm{RX}+\mathrm{T}
$$

- Inserting the first equation into the second and simplifying it, we get following equation: $\quad\left(\mathbf{x}_{2}\right)^{\top}[T]_{x} \mathbf{R} \mathbf{x}_{1}=\mathbf{0} \quad[T]_{x}=$ translation skew-symmetric $3 x 3$ matrix
- This provides a relation between the 2D point coordinates of a 3D point in each of the two images and the camera transformation parameters.

Essential Matrix and Fundamental Matrix

- In the previous equation the original 3D point coordinates have been removed. The matrix

$$
E=[T]_{x} R \in R^{3 \times 3}
$$

is called the essential matrix. The epipolar constraint is also known as essential constraint or bilinear constraint.

- Geometrically, this constraint states that the three vectors $\mathbf{0}_{\mathbf{1}} \mathbf{X}, \mathbf{o}_{\mathbf{2}} \mathbf{0}_{\mathbf{1}}$ and $\mathbf{o}_{\mathbf{2}} \mathbf{X}$ form a plane, i.e. the triple product of these vectors (measuring the volume of the parallelepiped) is zero:

$$
\text { volume }=\left(x_{2}\right)^{\top}\left(T X R x_{1}\right)=\left(x_{2}\right)^{\top}[T]_{x} R x_{1}=0
$$

- By transforming all image coordinates $x^{`}$ with the inverse calibration matrix \mathbf{K}^{-1} into metric coordinates \mathbf{x}, we obtain the epipolar constraint for uncalibrated cameras: $\left(\mathrm{X}_{2}\right)^{\top} \mathrm{K}^{-\mathrm{T}}[\mathrm{T}]_{\mathrm{x}} \mathrm{RK}^{-1} \mathrm{x}_{1}=0 \quad \Leftrightarrow \mathrm{x}_{2} \mathrm{Fx}_{1}=0$

The Eight-Point Linear Algorithm

- First we rewrite the epipolar constraint as a scalar product in the elements of the matrix \mathbf{E} and the coordinates of the points \mathbf{x}_{1} and \mathbf{x}_{2}. Let

$$
E^{\mathrm{s}}=\left(e_{11}, e_{21}, e_{31}, e_{12}, e_{22}, e_{32}, e_{13}, e_{23}, e_{33}\right)^{\top} \in R^{9}
$$

be the vector of elements of E and $x_{i}=\left(x_{i}, y_{i}, z_{i}\right)$

$$
a=\left(x_{1} x_{2}, x_{1} y_{2}, x_{1} z_{2}, y_{1} x_{2}, y_{1} y_{2}, y_{1} z_{2}, z_{1} x_{2}, z_{1} y_{2}, z_{1} z_{2}\right) \in R^{9}
$$

- Then the epipolar constraint can be written as:

$$
\left(x_{2}\right)^{\top} E x_{1}=a^{\top} E^{s}=0
$$

- For n point pairs, we can combine this into the linear system and solve for $\mathbf{E}^{\mathbf{s}}$
- Recover the displacement from the essential matrix decomposition into four possible solutions for rotation and translation.

Essential Matrix Decomposition

- The space of all essential matrices is called the essential space:

$$
e \equiv\left\{[T]_{x} R \mid R \in \text { Special Orthogonal Matrix } 3 \times 3, T \in R^{3}\right\} \subset R^{3 \times 3}
$$

- A nonzero matrix $\mathbf{E} \in \mathbf{R}^{3 \times 3}$ is an essential matrix if and only if \mathbf{E} has a singular value decomposition (SVD) $\mathbf{E}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\boldsymbol{\top}}$ with

$$
\Sigma=\operatorname{diag}\{\sigma, \sigma, 0\} \quad \text { for some } \sigma>0 \text { and } \mathbf{U}, \mathbf{V} \in \mathbf{S O}(3) .
$$

- Theorem (Pose recovery from the essential matrix): There exist exactly two relative poses (\mathbf{R}, \mathbf{T}) with $\mathbf{R} \in \mathbf{S O}(3)$ and $\mathbf{T} \in \mathbf{R}^{3}$ corresponding to an essential matrix $E \in \mathbf{e}$. For $E=U \Sigma V^{\top}$ we have:

$$
\begin{align*}
& \left([T]_{\mathrm{x} 1}, R_{1}\right)=\mathrm{UR}_{\mathrm{z}}(+\pi / 2) \Sigma U^{\top}, U\left(R_{z}\right)^{\top}(+\pi / 2) V^{\top}, \tag{1}\\
& \left([T]_{\mathrm{x} 2}, R_{2}\right)=\operatorname{UR}_{\mathrm{z}}(-\pi / 2) \Sigma U^{\top}, U\left(\mathrm{R}_{\mathrm{z}}\right)^{\top}(-\pi / 2) V^{\top} \tag{2}
\end{align*}
$$

- In general, only one of these gives meaningful (positive) depth values.

Triangulation from two views

- Estimate \mathbf{R} and \mathbf{T} from 4 possible solutions (select \mathbf{R} and \mathbf{T} that when substituted provides the positive depth)
- Use R and T to recover the depth of the 3D points and this give use the all 3D point corresponding to the each corresponding matches in the two images

Image 2
$\mathbf{R}_{2}, \mathbf{t}_{2}$

A Basic Reconstruction Algorithm

- We have seen that the 2D-coordinates of each 3D point are coupled to the camera parameters R and T through an epipolar constraint. In the following, we will derive a 3D reconstruction algorithm which proceeds as follows:
- We assume that we are given a set of corresponding points in two frames taken with the same camera from different vantage points.
- We assume that the scene is static, i.e. none of the observed 3D points moved during the camera motion
- Recover the essential matrix E from the epipolar constraints associated with a set of point pairs.
- Extract the relative translation and rotation from the essential matrix E.
- Triangulate from using \mathbf{R} and \mathbf{T} to get 3D points

Reconstruction from two views

- Reconstructed point cloud from two views

Bundle Adjustment

- Multiple 3D points as seen from multiple viewpoints
- Same points is visible in all three views

Bundle Adjustment

	Point 1	Point 2	Point 3
Image 1	$\mathbf{x}_{1}^{1}=\mathbf{K}\left[\mathbf{R}_{1} \mid \mathbf{t}_{1}\right] \mathbf{X}^{1}$	$\mathbf{x}_{1}^{2}=\mathbf{K}\left[\mathbf{R}_{1} \mid \mathbf{t}_{1}\right] \mathbf{X}^{2}$	
Image 2	$\mathbf{x}_{2}^{1}=\mathbf{K}\left[\mathbf{R}_{2} \mid \mathbf{t}_{2}\right] \mathbf{X}^{1}$	$\mathbf{x}_{2}^{2}=\mathbf{K}\left[\mathbf{R}_{2} \mid \mathbf{t}_{2}\right] \mathbf{X}^{2}$	$\mathbf{x}_{2}^{3}=\mathbf{K}\left[\mathbf{R}_{2} \mid \mathbf{t}_{2}\right] \mathbf{X}^{3}$
Image 3	$\mathbf{x}_{3}^{1}=\mathbf{K}\left[\mathbf{R}_{3} \mid \mathbf{t}_{3}\right] \mathbf{X}^{1}$		$\mathbf{x}_{3}^{3}=\mathbf{K}\left[\mathbf{R}_{3} \mid \mathbf{t}_{3}\right] \mathbf{X}^{3}$

- A valid solution for $\mathbf{R}_{\mathbf{1}}\left|\mathbf{t}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}\right| \mathbf{t}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{3}} \mid \mathbf{t}_{\mathbf{3}}$ will be the one the minimize the reprojection error of the 3d points from multiple views:
$\min \Sigma_{i} \Sigma_{\mathbf{j}}\left(\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{j}}-\mathbf{K}\left[\mathbf{R}_{\mathbf{i}} \mid \mathbf{T}_{\mathbf{i}}\right] \mathbf{X}^{\mathbf{j}}\right)^{\mathbf{2}} \quad$ Optimization problem

Bundle Adjustment

3D Reconstruction Steps

SLAM introduction

- Localization - Determine the pose given a map
- Mapping - Generate a map when pose is known
- SLAM - key steps
- Defined by an arbitrary coordinate system (initial pose)
- Generate a map using sensors, and at the the same time compute pose
- Map errors and pose estimate are correlated

SLAM algorithm

Feature-Based

abstract image to feature observations

Direct

keep full images (no abstraction)

LSD SLAM

Advice on Applying ML / DL

- Case studies from Anthill Inside ppt

Disciplined Machine Learning

GAN

- StackGAN
- Conditional GAN
- InfoGAN
- Self Attention GAN
- Image-to-Image Translation with Conditional Adversarial Networks

Attention Networks

- Compositional Attention Networks
- Hierarchical Recurrent Attention Network for Response Generation

Session IV Practical DL

Agenda
\rightarrow Real World Problem Definition
\rightarrow AVA Dataset
\rightarrow Steps involved

Aesthetic Scoring

Problem statement: Given an image, Rate it based on the Aesthetics of the Image

6.38 (7.16)

5.61 (5.54)

3.55 (3.53)

AVA Dataset

- Large scale aesthetics dataset
- Each image is scored between 0 to 10 by multiple human reviewers

Img ref-https://ai.googleblog.com/2017/12/introducing-nima-neural-image-assessment.html

AVA Dataset

The most straightforward idea

- Try 10 class classification
- How to get a label for each image?
- Max: choose the most voted score
- Average: Calculate the average of all assigned scores
- How to sample data?
- Sample 10k images for each class for training and keep the rest for testing.

Img Ref-https://www.vexels.com/vectors/preview/78830/idea-man-drawing

What architecture to choose?

- Can we try our own network?
- Can we try out a ready made architecture like ResNet, AlexNet or GoogleNet?
- Larger data \rightarrow deeper architecture
- Smaller data \rightarrow simple and shallow architecture

Image ref- https://isha.sadhguru.org/in/en/wisdom/article/confusion-and-clarity-on-the-spiritual-path

Why is the accuracy low?

Img ref-http://leesclassroom.global2.vic.edu.au/2014/03/19/maths-problem-solving-2/

Class imbalance

- Class imbalance: Unequal data for all classes. The model is biased against or towards certain classes.
- Training is biased and hence accuracy is also biased
- Good practices: Always visualise the data before spending too much time in training.

Poor progress so far. What else is the problem? Let's keep moving.

Critical analysis of the loss function

- Let's take a simple example to decode the problem with the loss function.
- Example 1: Let's say the true label was 1 - [$1,0,0,0,0,0,0,0,0,0]$
- But the predicted label had this probability distribution - [$0.05,0,0,0,0,0,0.95,0,0,0$]
- Binary cross entropy loss $=-\sum y_{i}$ logy $_{i}^{\prime}$

$$
=-1 * \log 0.05=1.31
$$

- Example 2: Let's say the true label was 1 - [$1,0,0,0,0,0,0,0,0,0]$
- But the predicted label had this probability distribution- [.05, 0.95, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- Binary cross entropy loss $=-\sum y_{i} \log y_{i}$

$$
=-1 * \log 0.05=1.31
$$

- Can you figure out the problem?

Is there a better loss function?

- Weighted L2 loss function

- Example : Let's say the true label was $1-[1,0,0,0,0,0,0,0,0,0]$
- But the predicted label had this probability distribution - [0.05, 0, 0, 0, 0, 0, 0.95, 0, 0, 0]
- Weighted L2 loss $=\sum \mathrm{W}_{\mathrm{i}}^{*}\left|\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right|$ where $\mathrm{w}_{\mathrm{i}}=\mid$ G.T index- $\mathrm{i} \mid+1$

$$
=1 * 0.95+6 * 0.95=6.65
$$

- Example: Let's say the true label was $1-[1,0,0,0,0,0,0,0,0,0]$
- But the predicted label was $2-[.05,0.95,0,0,0,0,0,0,0,0,0]$
- Weighted L2 loss $=\sum \mathbf{W}_{\mathrm{i}}^{*}\left|\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{\prime}\right|$ where $\mathrm{w}_{\mathrm{i}}=\mid$ G.T index $-\mathrm{i} \mid+1$

$$
=1 * 0.05+2 * 0.95=1.95
$$

- Let's improve our model with this refined loss function

Let's visualise the data.

- Visualising data gives us some intuitions and exposes shortcomings of the current model
- Is my train data representative of the real time data.

Let's visualise the data.

- Visualising data gives us some intuitions and exposes shortcomings of the current model
- Is my train data representative of the real time data.

Some observations and questions:-

- Aspect ratio of the image plays an important role
- Can we group classes together and reduce
 the number of classes?

Img Ref - http://www.stbrigidsms.wa.edu.au/newsletter/view/1/101-week-7-term-1

Seeing familiar curves. Lets try a deeper model

Credits: cs229, Andrew Y. Ng

But is this data enough? If not, Augment the data

- What transformations on my image leave the label of the image unchanged?
- Apply all those transformations to augment the limited data set.

Img Ref -
https://www.researchgate.net/figure/Data-augmentation-using-semantic-preserving-transformation-for-SBIR_fig2
319413978

Can we add metadata?

- Tagging images with useful metadata could improve the accuracy
- What tags could be useful for AVA dataset??
- Nature of the scene: Marriage, Playground, Forest etc..

Source

- Number of people in the image

Changing metrics

- Is our final accuracy metric in line with our training objective?
- Calculating accuracy in terms of predicting a correct label is misleading.
- Calculating how far is the predicted label from the true label may give a better measure.
- Better ways of generating data: Which of these statements is better for data collection?
- Rate this image in a scale of 1-10.
- How is the image? Excellent, good, average, below average, poor.
https://www.anirudhsethireport.com/visualise-and-be-motivated/

Overgeneralization

- Am I trying to solve a more complex problem than what is actually required?
- Does solving the more complex problem add more business value?
- An over generalising problem statement:
- Which picture has a great aesthetics with story telling value?

https://sites.google.com/a/aguafria.org/block-2-logical-fallacies/home/overgeneralization-fallacy

Advice on Applying Machine Learning: War Stories

Sumod K Mohan

Anti-pattern 0 : Lott' Data \& AI Magic Sparkle

- Let's use AI <insert favorite jargon instead>, everyone's using it
- Trivial: Lets use AI suggest to do spell check, fit a line etc
- Complex: Chatbot to converse on any given topic

Google's Duplex does it: Narrow ability in specific skills

- Complicated: Replace Doctor's (text, speech, viewing images, emotions etc)
- Lott' Data: Magic Sparkle of AI: Sprinkle and forget
- Can't we use txfer learning/unsupervised/RL: Nuances matter
- Low Data: Augment Data, Can't you use GAN's ?
- Recent paper that solves prob y, why can't we use it for x

Anti-pattern 0 : Lott' Data \& AI Magic Sparkle

- Gets your hands dirty \& See beyond jargons
- Hold ML Sessions/Attend meetups to get a hang of nuances
- Trust the people whose hands are dirty but verify solving right problem " ..in research, in general the people that are doing it are in the best position to evaluate it, not the people that are supervising it ...": Robert Noyce, Co-Founder, Intel
- Hopefully this talk will help to make better decisions
- Understand ML/DL Software Lifecycle (next)

Anti-pattern 0 : Lott' Data \& AI Magic Sparkle

Anti-pattern 1: Garbage in - Garbage out

Typical DL/ML System (supervised)

Anti-pattern 1: Garbage in - Garbage out

Symptoms

- Added new data, system gone haywire
- Model on knife-edge, minor tweak all hell breaks loose
- Long Repeated Iteration Loops for Developing models
- Initially took 4 months, more data again took 5 months, more data...
- Model gives crazy results every now and then

Anti-pattern 1 : Garbage in - Garbage out

- Look at your data
- Kosher: Nothing off in Input and Output
- Do a simple walk through each stage
- Can you overfit your model (98-99\%+ training)
- Visualize label/output distribution: Is it nearly equal, if not then handling uneven classes
- Improving Beyond (large data issues)
- Tools to effectively view large quantity of data

Anti-pattern 1 : Garbage in - Garbage out

- Look at your data
- Kosher: Nothing off in Input and Output
- Do a simple walk through each stage
- Can you overfit your model (98-99\%+ training)
- Visualize label/output distribution: Is it nearly equal, if not then handling uneven classes
- Improving Beyond (large data issues)
- Tools to effectively view large quantity of data

Data Visualization

- Angular JS based visualizer
- Load upto 20K pts
- Zoom-in/Zoom-out
- Show k-neighbors
- KD-Tree DS for fast ops

$$
8^{\circ}
$$

Anti-pattern 1 : Garbage in - Garbage out

- Look at your data
- Kosher: Nothing off in Input and Output
- Do a simple walk through each stage
- Can you overfit your model (98-99\%+ training)
- Visualize label/output distribution: Is it nearly equal, if not then handling uneven classes
- Improving Beyond (large data issues)
- Tools to effectively view large quantity of data
- Look at critical regions \& Inspect your model: CAM/LIME
- Is it really confusing or learning unrelated patterns (Bach vs Mozart)
- Synthesize or Augment or Simulate
- GANs

LIME: Locally Interpretable Model Agnostic Explanations

- Simulate

Anti-pattern 1 : Garbage in - Garbage out

- Look at your data
- Kosher: Nothing off in Input and Output
- Do a simple walk through each stage
- Can you overfit your model (98-99\%+ training)
- Visualize label/output distribution: Is it nearly equal, if not then handling uneven classes
- Improving Beyond (large data issues)
- Tools to effectively view large quantity of data
- Look at critical regions \& Inspect your model: CAM/LIME
- Is it really confusing or learning unrelated patterns (Bach vs Mozart)
- Synthesize or Augment or Simulate

- GANs
- Simulate

Disciplined ML/DL Training

Anti-pattern 2 : Metrics (good, bad, ugly)

- Incorrect Metrics
- Bad Loss Function

- Non uniform dist of labels

Loss \& Metrics

Aesthetic Scoring Problem

Training

4

Loss: To optimize your model

Actual	4:Wow	4:Wow	4:Wow	4:Wow
Pred	1: Bad	2: Nice	3:Good	4:Wow
Loss A	1	1	1	0
Loss B	3	2	1	0
Loss C	9	4	1	0

Metric:
To judge performance

Loss \& Metrics

Aesthetic Scoring Problem

Training

Loss: To optimize your model

Actual	4 (Cat)	4 (Cat)	4 (Cat)	4 (Cat)
Pred	1 (Dog)	2 (Pig)	3 (Man)	4 (Cat)
Loss A	1	1	1	0
Loss B	3	2	1	0
Loss C	9	4	1	0

Metric:
To judge performance

Anti-pattern 2 : Metrics (good, bad, ugly)

- Incorrect Metrics
- Bad Loss Function

- Bad distribution of data

Test Data Distribution

Anti-pattern 2 : Metrics (good, bad, ugly)

- Incorrect Metrics (Harsh's Talk)
- Bad Loss Function
- Bad distribution of data
- No Context: Face Recog of 98%
- On benchmark + already detected
- Detection \& Localization vs Recog vs

Verification

- Under very different conditions
- Incorrect Maths
- Not accounting for info leaks

Detection \& Loc
Is there \& Where are faces

Authentication/Verify

Is she Madhuri Dixit?

Recognition

Who is this?

Anti-pattern 2 : Metrics (good, bad, ugly)

- Incorrect Metrics
- Bad Loss Function
- Bad distribution of data
- No Context: Face Recog of 98%
- On benchmark + already detected
- Detection \& Localization vs Recog vs

Verification

- Under very different conditions

- Incorrect Maths: Loss/Metrics
- Not accounting for info leaks

Anti-pattern 3: Divide and Conquer

- Better Interpretability \& Easier to debug
- Easier to improve
- Distributed Development / Dedicated Personal

Anti-pattern 3 : Divide and Conquer

$$
0.95 * 0.95 * \min (0.95,0.90,0.95) * 0.95=0.81
$$

- Error gets accumulated at each stage
- Not independent: Error cascades

Anti-pattern 3 : Divide and Conquer

Total : 10K Images

- Error gets accumulated at each stage
- Not independent: Error cascades
- Not independent: Improvement Cascades Needed (War Story)
- Happens in DL too: Two stage detector, CRF on top, CNN-RNN etc

Anti-pattern 4: General-Enough vs Over-General

- Sales: More general it is, easier to sell
- Sales: high accuracy \& fast (30fps) solution
- Engg: accurate \& faster:

Expensive to develop such a system (many man months)

Anti-pattern 4: General-Enough vs Over-General

- Computer Vision: Types of variations
- Scale, Rotation \& 3D Rotation, Translation
- Intra-Class variance: smaller better
- Inter-Class variance: larger better
- Lighting: Low light vs Specular Reflection etc
- Occlusion

Anti-pattern 4: General-Enough vs Over-General

- Sales: More general it , easier to sell
- Sales: high accuracy \& fast (30fps) solution
- Engg: accurate \& faster

- War Story: Form Reading Page Alignment
- Alignment: 0-360 Degrees
- 4-5 Mo: matched marker-descriptor
- Accuracy: 98.8+\%

Anti-pattern 4: General-Enough vs Over-General

- Sales: More general it (seems), easier to sell
- Sales: high accuracy \& fast (30fps) solution (for demos)
- Engg: accurate \& faster
- War Story: Form Reading Page Alignment
- Alignment: 0-360 Degrees
- 4-5 Mo: matched marker-descriptor
- Accuracy: 98.8+\%
- Real world scanner: 99.99\%+

- Clear understanding of product use-case
- Generality is expensive, choose wisely (Engg Comm)

Anti-pattern 5: Testing, Production etc

- Managers: Understand what problem team is really solving
- Managers: Engage in deeper conversations, allow it ok for engineers to not know/understand None of us know why these really works, though we do have some intuitions
- Site-Testing: Understand users creating your data
- UI/UX causing bad data (words like intermediate, exceptional)
- Children Binging behaviours (measures to reduce)
- Good UI/UX to create quality data (to remind users/annotators)
- Prod != Prototype
- Human in the loop

Anti-pattern 7: Over-theorize

Build and Iterate;
Ph.D's and Math inclined more prone to this (self-confession :)

Takeaways

- Managers et al
- Not Magic Sparkle: Systematic, Disciplined development, don't over trivialize,
- Importance of Clean Data \& Representative Data
- Trust your engineers instincts but ensure they are solving the right tight problem
- Understand Prototype != Production
- Balance General Enough vs Over General (Over greedy is bad)
- Testing: Importance of UI/UX, test often/test early, engineers must see what users does
- Man in the loop: At-least Initially, faster to iterate
- Don't over-theorize

Takeaways

- DL Engineers et al
- Garbage in - Garbage Out: View your data, Systematic Debugging, Build Tools, Simulate/Augment
- Disciplined ML: Different data sets
- Good, Bad, Ugly Loss and Metrics: Context of publ. results, correct dist?, same conditions, Info leaks
- Divide and Conquer: Interpretability and Error/Improvement Cascades
- Keep up-to date with tools: spacy, keras, etc...

Thanks!

Autolnfer Technologies

14, 12th Cross Road, Vasanth Nagar
Bangalore 560052, India
sales@autoinfer.com

Soliton Technologies
683, 15th Cross Road, 2nd Phase, J. P. Nagar
Bangalore 560078, India
vision@solitontech.com

Extra Slides

ML System Life Cycle

Takeaways

- No Magic Sparkle: Systematic, Disciplined development,
- Defining Business Problem

Assumptions can you make: Day/Night, 10K Objects
Cut Slack but solve only what is needed

- Defining ML Problem

Dividing into sub-problems (improves interpretability)
Shannon's Successful Researcher (Error Propagation)

- Modelling

Disciplined ML: Dev, Valid, Test (datasets)
Systems Thinking: Handling
Metrics: Good Metrics, Bad Metrics, Ugly Metrics \& What to optimize (segm eg)

- Understand Limitation, Incorporate Rich Data, Iterate with real data as soon as possible

Setting Expectations

Soliton NEO Architecture

Soliton Vision Artist

Visualization - Class Activation Maps

	8	$0 .$	17	CH_{4}	97
3 as 2	2	3	4 as 6	6	4
		令.	1	-	$\stackrel{r}{\text { d }}$
3 as 0	0	3	4 as 6	6	4
$* 1$	Cl *	(8)		s	-4
7 as 4	4	7	3 as 7	7	3

Visualization - Class Activation Maps

8	3	(6)	17		\% ${ }^{1}$
3 as 2	2	3	4 as 6	6	4
			1	8	if
3 as 0	0	3	4 as 6	6	4
41	$\leqslant 1$	$5 y$			
7 as 4	4	7	3 as 7	7	3

Visualization - Class Activation Maps

			17	\bigcirc	
3 as 0	0	3	4 as 6	6	4
			4		
3 as 2	2	3	4 as 6	6	4
4					
7 as 4	4	7	3 as 7	7	3

