

Vision for a Better World

Deep Learning in

 Computer Vision

 Computer Vision}

Anthill 2018

The team

Humans in the World

- Perceive -> Reason -> Control

Reasoning,
Motion Planning,
Task Planning

Human Vision

- Importance of vision for humans
- 30% of cortex used in vision
- McGurks Effect
- Arguable one of the most Complex Machines
- Color Stereo Pair: 768×576 @ $30 \mathrm{fps}: 80 \mathrm{MB} / \mathrm{s}$
- 10^{11} Neurons
- $10^{14}-10^{15}$ Synapses
- Eons of evolution, learning right priors
- Continuous flow of perception (with very few glitches)

Human Vision

- MultiSensory, High Resolution, Immersive Inner Movie
- Arguable one of the most Complex Machines
- Color Stereo Pair: 768×576 @ 30 fps : $80 \mathrm{MB} / \mathrm{s}$
- 10^{11} Neurons
- $10^{14}-10^{15}$ Synapses

- Eons of evolution, learning right priors
- Continuous flow of perception (with very few glitches)
- Perception
- No eye inside an eye: just stream of electrical impulses : Shades
- Brain combines them all to create our reality based on past experiences: Sound Prediction \& McGurks
- It is Brain's best guess of what is out there: Ames Room

Perception as Controlled Hallucination

- Hallucination: Uncontrolled perception
- Perception: Controlled Hallucination
- Perception: Not Passive
- Actively Generate a Model
- Not just our external perception
- Even Internal

Interconnections

Computer Vision

- Image Processing, Computer Vision, Machine Vision
- Low Level: Edge Detection, Filtering..
- Mid Level: Segmentation..

- High Level: Object Detection, Stereo

What is Computer Vision?

Ability of Computers to See and Understand from the Scene

- Saying what are all the things present in the image
- Describe the scene

Computer Vision in Games

Image Captioning

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Seam Carving

Vision Applications

- Bullet Time special-effect in The Matrix is an example of the application of SFM ideas.
- Linear array of cameras replaces moving camera.
- Green screen makes segmentation easy.

Vision Applications: Synthetic Aperture Imaging

Vision Applications: Visual Odometry

Vision Applications: Navigation

Goals

Help building an understanding of How to solve real world problems using Computer Vision with ML and DL

Understand the Math and appreciate the beauty of it as opposed to simply Applying the technology

We can't teach you Vision in a 6 hour Workshop. But we will try our best to Motivate you towards learning

Machine Learning

Evolution of ML. Understanding how Machines learn. Limitations

Computer Vision

Digital image capture, storage and process. Traditional Object detection and Limitations

Deep Learning

History and Biological motivation. Dive into Black
Box (DL). Best practices

What are the problems with these images?

Soliton
Sison tror a Betarew Worr

Perspective | Projective Geometry

https://orlandotutor.wordpress.com/2010/10/28/a-perspective-on-sunbeams/

Equation of Line

- Equation of line cartesian coordinate system:

$$
y=m x+c \text { where } m \text { is slope and } c \text { is intercept }
$$

- How can we represent the vertical line with above equation?
- We can use polar coordinate system to represent line

$$
a \sin \theta+b \cos \theta=\rho
$$

where a and b are multiples of r, θ is the angle and ρ is the constant

- Can we use linear algebra with above equation?
- No as we are dealing with nonlinear functions

Lines

- A better parameterization can represent all lines:

$$
a x+b y+c=0
$$

- Here the line is represented by 3 parameters:

$$
u=[a, b, c]^{\top}
$$

- But nonzero scalar multiple does not change the equation:

$$
\alpha a x+\alpha b y+\alpha c=0, \quad \alpha \neq 0
$$

- So we have only 2 degrees of freedom
- To make this work, we have to introduce a non-intuitive definition:

$$
\mathbf{u} \equiv \alpha \mathbf{u}, \quad \alpha \neq 0
$$

- I.e., the vector u and its scalar multiple are the same

Points

- While we are at it, let us put the point into a vector, too:

$$
\mathbf{p}=\left[\begin{array}{lll}
x & y & 1
\end{array}\right]^{T}
$$

- Which leads to the beautiful expression:

$$
\mathbf{p}^{T} \mathbf{u}=\mathbf{u}^{T} \mathbf{p}=0
$$

- Nonzero scalar multiple also does not change the point:

$$
\mathbf{p}^{T} \mathbf{u}=\mathbf{u}^{T} \mathbf{p}=\mathbf{p}^{T}(\alpha \mathbf{u})=(\alpha \mathbf{p})^{T} \mathbf{u}=0
$$

- So we introduce an analogous non-intuitive definition:

$$
\mathbf{p} \equiv \alpha \mathbf{p}, \quad \alpha \neq 0
$$

Homogeneous Coordinates

- Homogeneous representation of Point

Normal coordinates	$(x, y)^{\top}$
Homogeneous coordinates	$\left(x_{1}, x_{2}, x_{3}\right)^{\top} \quad$ but only 2DOF

- Conversion to normal representation as follows

$$
\mathbf{x}=\mathbf{x}_{1} / \mathbf{x}_{3} \text { and } \mathbf{y}=\mathbf{x}_{2} / \mathbf{x}_{3}
$$

- Convert to Homogeneous coordinates (2, 3) ? ->
- Convert to inhomogeneous coordinates (4, 6, 2) ? ->

Homogeneous Coordinates

- Homogeneous representation of lines

$$
\begin{array}{ll}
3 \mathrm{x}+4 \mathrm{y}+2=0 & (3,4,2)^{\top} \\
a x+b y+c=0 & (a, b, c)^{\top} \\
(k a) x+(k b) y+k c=0, \forall k \neq 0 & (a, b, c)^{\top} \sim k(a, b, c)^{\top}
\end{array}
$$

- Homogeneous representation of points on a line

$$
\begin{aligned}
& \mathrm{x}=(x, y, 1)^{\top} \text { on } 1=(a, b, c)^{\top} \text { if and only if } a x+b y+c=0 \\
& (x, y, 1)(a, b, c)^{\top}=(x, y, 1) 1=0 \quad(x, y, 1)^{\top} \sim k(x, y, 1)^{\top}, \forall k \neq 0
\end{aligned}
$$

The point \mathbf{x} lies on the line I if and only if $\mathbf{x}^{\top}|=|^{\top} \mathbf{x}=\mathbf{0}$

Example

- Question: What does the vector [4, 6, 2]T represent?

Ans: It depends.

- If the vector is a 2D point, then the point is $(4 / 2,6 / 2)=(2,3)$-- divide by 3rd coordinate
- If the vector is a 2D line, then the line is $4 x+6 y+2=0$, or $2 x+3 y+1=0$
- Points and lines are represented in the same way. Context determines which.

Points from Lines and vice-versa

- Ques.: Which points lies at the intersection of two lines?

The intersection of two lines 1 and l^{\prime} is $\mathrm{x}=\mathrm{l} \times \mathrm{l}^{\prime}$

- Ques.: Which line passes through two points x and x^{\prime} ?

The line through two points x and x^{\prime} is $1=x \times x^{\prime}$

Example:
$(0,1,1) y=1 \underset{x=1}{\underbrace{}_{x=1}(1,1,1)}$
$(1,0,1)$

- Ques: What will be the intersection point when two lines are parallel?

$$
I=(1,0,1)^{\top} \text { and } I^{\prime}=(1,0,2)^{\top} ?
$$

Duality

$$
\begin{array}{ccc}
\mathrm{X} & \longleftrightarrow & \begin{array}{c}
1 \\
\mathrm{x}^{\top} 1=0
\end{array} \longleftrightarrow \\
\mathrm{l}^{\top} \mathrm{x}=0 \\
\mathrm{X}=\mathrm{l} \times \mathrm{l}^{\prime} & \longleftrightarrow & \mathrm{l}=\mathrm{x} \times \mathrm{x}^{\prime}
\end{array}
$$

Duality principle:
To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

Ideal Points and The Line at Infinity

- Intersections of parallel lines
$I=(1,0,1)^{\top}$ and $I^{\prime}=(1,0,2)^{\top}$ the intersection point $->|x|^{\prime}=(0,-1,0)^{\top}$ this is the point at infinity where these two lines meet.

Example:
$1=(a, b, c)^{\top}$ and $\mathrm{l}^{\prime}=\left(a, b, c^{\prime}\right)^{\top}$

Line formed by points at infinity?

Ideal points

$$
\left(x_{1}, x_{2}, 0\right)^{\top}
$$

Line at infinity $\quad 1_{\infty}=(0,0,1)^{\top}$

How to achieve?

Class I: Euclidean

$$
\begin{gathered}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
\varepsilon \cos \theta & -\sin \theta & t_{x} \\
\varepsilon \sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad \begin{array}{l}
\text { (iso=same, metric=measure) } \\
\varepsilon= \pm 1 \\
\text { orientation preserving: } \\
\text { orientation reversing: } \\
\varepsilon=1 \\
\varepsilon=-1
\end{array} \\
\mathrm{x}^{\prime}=\mathbf{H}_{E} \mathbf{x}=\left[\begin{array}{cc}
\mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
\end{gathered}
$$

3DOF (1 rotation, 2 translation)
special cases: pure rotation, pure translation
Invariants: length, angle, area

Class I: Euclidean

Class II: Similarities

$$
\begin{array}{r}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{x} \\
s \sin \theta & s \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad \begin{array}{l}
\text { (isometry }+ \text { scale) } \\
\text { also known as equi-form (shape } \\
\text { preserving) }
\end{array} \\
\mathrm{x}^{\prime}=\mathbf{H}_{S} \mathrm{x}=\left[\begin{array}{cc}
s \mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
\end{array}
$$

4DOF (1 scale, 1 rotation, 2 translation)
metric structure = structure up to similarity (in literature)
Invariants: ratios of length, angle, ratios of areas, parallel lines

Class III: Affine transformations

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

$$
\mathrm{x}^{\prime}=\mathbf{H}_{A} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x}
$$

$\mathrm{x}^{\prime}=\mathbf{H}_{A} \mathrm{x}=\left[\begin{array}{cc}\mathbf{A} & \mathrm{t} \\ 0^{\top} & 1\end{array}\right] \mathrm{x}$ $\mathbf{A}=\mathbf{R}(\theta) \mathbf{R}(-\phi) \mathbf{D} \mathbf{R}(\phi) \quad \mathbf{D}=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$
6DOF (2 scale, 2 rotation, 2 translation)
non-isotropic scaling! (2DOF: scale ratio and orientation)
Invariants: parallel lines, ratios of parallel lengths, ratios of areas

Class VI: Projective transformations

$$
\mathrm{x}^{\prime}=\mathbf{H}_{P} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & v
\end{array}\right] \mathrm{x} \quad \mathrm{v}=\left(v_{1}, v_{2}\right)^{\top}
$$

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)
Action non-homogeneous over the plane
Invariants: cross-ratio of four points on a line (ratio of ratio)

Overview Transformations

Euclidean
3dof
$\left.\begin{array}{lll}r_{11} & r_{12} & t_{x} \\
r_{21} & r_{22} & t_{y} \\
0 & 0 & 1\end{array}\right]$
Similarity
4dof \(\left[\begin{array}{lll}s r_{11} \& s r_{12} \& t_{x}

s r_{21} \& s r_{22} \& t_{y}

0 \& 0 \& 1\end{array}\right] \quad\)| Ratios of lengths, angles. |
| :--- |
| The circular points I, J |

What are these Transformations?

+

Projective transformations

Definition:

A projectivity is an invertible mapping h from P^{2} to itself such that three points $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ lie on the same line if and only if $h\left(\mathrm{x}_{1}\right), h\left(\mathrm{x}_{2}\right), h\left(\mathrm{x}_{3}\right)$ do.

Theorem:

A mapping $h: \mathrm{P}^{2} \rightarrow \mathrm{P}^{2}$ is a projectivity if and only if there exist a non-singular 3×3 matrix \mathbf{H} such that for any point in P^{2} represented by a vector x it is true that $h(\mathrm{x})=\mathrm{Hx}$

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \begin{aligned}
& \text { or } \begin{array}{l}
\text { Projectivity }=\text { collineation }= \\
8 \mathrm{DOF}
\end{array} \quad \begin{array}{l}
\text { projective transformation }= \\
\text { homography }
\end{array}
\end{aligned}
$$

A hierarchy of transformations

Projective linear group
Affine group (last row (0,0,1))
Euclidean group (upper left 2×2 orthogonal)
Oriented Euclidean group (upper left 2×2 det 1)
Alternative, characterize transformation in terms of elements or quantities that are preserved or invariant
e.g. Euclidean transformations leave distances unchanged

Ref: Multiple View Geometry in Computer Vision (Second Edition) : Richard Hartley, Andrew Zissermann

Projective Distortion

Ref: ECE 661: Computer Vision, Avinash Kak, https://plus.maths.org/content/getting-picture

Projective transformation

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \begin{aligned}
& \quad \begin{array}{l}
\mathrm{x}^{\prime}=\mathbf{H x} \\
8 \mathrm{DOF}
\end{array} \quad \begin{array}{l}
\text { Projectivity }=\text { projective } \\
\text { transformation = homography }
\end{array}
\end{aligned}
$$

Removing projective distortion

select four points in a plane with known coordinates

$$
\begin{aligned}
& x^{\prime}=\frac{x_{1}^{\prime}}{x_{3}^{\prime}}=\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}} \quad y^{\prime}=\frac{x_{2}^{\prime}}{x_{3}^{\prime}}=\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}} \\
& \left.x^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=h_{11} x+h_{12} y+h_{13} \quad \text { (linear in } h_{i j}\right) \\
& y^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=h_{21} x+h_{22} y+h_{23}
\end{aligned}
$$

Remark: no calibration at all necessary
(2 constraints/point, 8DOF $\Rightarrow 4$ points needed)

Camera Model

Lens configuration (internal parameter)

Spatial relationship between sensor and pinhole (internal parameter)

Camera body configuration (extrinsic parameter)

Pinhole Camera Model

- Simplest model of imaging process

Ref: 1. "A Flexible New Technique for Camera Calibration", Zhengyou Zhang
2. https://in.mathworks.com/help/vision/ug/camera-calibration.html
3. https://jordicenzano.name/front-test/2d-3d-paradigm-overview-2011/camera-model/

Pinhole Camera Model- Another Representation

Homogeneous Representation

3D World Point $(X, Y, Z)^{T} \mapsto(f X / Z, f Y / Z)^{T}$

Modeling Camera Sensor Offset

Image Plane

$$
\begin{gathered}
(X, Y, Z)^{T} \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)^{T} \\
\left(p_{x}, p_{y}\right)^{T} \text { principal point }
\end{gathered}
$$

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{x} \\
Z
\end{array}\right)=\left[\begin{array}{cccc}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Modeling Camera Sensor Offset

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left[\begin{array}{llll}
f_{x} & & p_{x} & 0 \\
& f_{y} & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

- If pixel is skewed

Homogeneous form of point in image plane

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left[\begin{array}{llll}
f_{x} & & s & p_{x} \\
& f_{y} & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Homogeneous form of 3D World Point

Conversion of Coordinate System

- The pinhole model considers object points in camera coordinate system and the real world coordinate system might be different

- Transformation between two co-ordinate system is given by two factors Rotation and Translation

Conversion of Coordinate System

- Point in camera coordinate system to point in world coordinate system

$$
P_{c}=R_{3 \times 3} P_{W}+T_{3 \times 1}
$$

$$
\binom{P_{c}}{1}=\left[\begin{array}{ll}
R_{3 \times 3} & T_{3 \times 1}
\end{array}\right]\binom{P_{W}}{1}
$$

$\left.\begin{array}{l}\begin{array}{l}\text { K is } 3 \times 3 \text { matrix which defines } \\ \text { internal parameters of the } \\ \text { camera. It has 5 DOF }\end{array} \\ v\end{array}\right)\binom{u}{v}=K_{3 \times 3}\left[\begin{array}{ll}R_{3 \times 3} & T_{3 \times 1}\end{array}\right]\left(\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right)$
[RT] define rotation and translation of camera these are called extrinsic parameters. It has 6 DOF

Application of Homography

- This equation can be solved if we know 3D points in real world and its corresponding 2D points in image
- Error chances are high when we use 3D points and 'ease of use' is low
- If all points are in single plane, it will become plane to plane transformation eliminating one of the dimension

$$
\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)=K_{3 \times 3}\left[\left.\begin{array}{ll}
R_{3 \times 3} & T_{3 \times 1}
\end{array} \right\rvert\, \begin{array}{c}
X \\
Y \\
0 \\
1
\end{array}\right)
$$

Mapping between planes

Projection from one plane to another may be expressed by $x^{\prime}=H x$

Application of Homography

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=K_{3 \times 3}\left[\begin{array}{ll}
R_{3 \times 2} & T_{3 \times 1}
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
1
\end{array}\right)
$$

Plane to plan transformation (H)

$$
p_{\text {cam }}=H_{3 \times 3} P_{\text {World }}
$$

$$
H=K_{3 \times 3}\left[\begin{array}{ll}
R_{3 \times 2} & T_{3 \times 1}
\end{array}\right]
$$

Given set of corresponding points in real world plane (checkerboard) and point in image we can find the H and decompose H into K, R and T

Lens effect

Camera model doesn't consider lens effects

- Lens - to focus light and converge
- Distortions

- Radial Distortion - shape of lens

- Tangential Distortion - image sensor not parallel to lens

Sensor
Ref:http://zone.ni.com/reference/en-XX/help/370281U-01/nivision/vbasics/choose_a_calibration_ 54

Overview of Camera Calibration

- Object points - known object plane
- Image points - Detection of feature points in image
- Homography matrix using correspondence between image points and object points.
- Decompose homography matrix to K, R and T
- Follow the above procedure for large samples
- Result : Intrinsic matrix K

Image Stitching

Image Stitching

1. Repeat for all images
a. Detect 2D Features points in both the images
b. Find match between 2D features of both images
c. Find Homography between two images using matched points (Do RANSAC to reduce effect of outliers)
d. Warp the image w.r.t any particular one image
e. Merge the images
2. Color Blend the final image

Decomposition of projective transformations

$$
\mathbf{H}=\mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P}=\left[\begin{array}{ll}
s \mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{K} & 0 \\
0^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & 0 \\
\mathrm{v}^{\top} & v
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & v
\end{array}\right]
$$

$$
\mathbf{A}=s \mathbf{R} \mathbf{K}+\mathrm{tv}^{\top}
$$

decomposition unique (if
Example:

$$
\begin{aligned}
& \mathbf{H}=\left[\begin{array}{ccc}
1.707 & 0.586 & 1.0 \\
2.707 & 8.242 & 2.0 \\
1.0 & 2.0 & 1.0
\end{array}\right] \\
& \mathbf{H}=\left[\begin{array}{ccc}
2 \cos 45^{\square} & -2 \sin 45^{\square} & 1.0 \\
2 \sin 45^{\square} & 2 \cos 45^{\square} & 2.0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0.5 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

A model for the projective plane

exactly one line through two points
exactly one point at intersection of two lines

More examples

Action of affinities and projectivities on line at infinity

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
0^{\top} & v
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left(\mathbf{A}\binom{x_{1}}{x_{2}}\right) \quad \begin{aligned}
& \text { Line at infinity stays at infinity, } \\
& \text { but points move along line }
\end{aligned}
$$

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & v
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)=\binom{\mathbf{A}\binom{x_{1}}{x_{2}}}{v_{1} x_{1}+v_{2} x_{2}} \quad \begin{aligned}
& \text { Line at infinity becomes finite, } \\
& \text { allows to observe vanishing points, horizon, }
\end{aligned}
$$

Session II (ML)

\rightarrow Object Classification
\rightarrow Classification: Simple Version
\rightarrow Features
\rightarrow Classification: CV based
$\rightarrow \quad$ Linear classifiers
\rightarrow SVM

What is Machine Learning?

- Arthur Samuel (1959): Field of study that gives computers the ability to learn without being explicitly programmed
- A well-posed learning problem (1998): A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance measure P, as measured by P, improves with experience E .

Classification

Handwritten character Classification

Q: As a Human, how do I learn to classify?

1. Learn Patterns
2. Learn Rules

No.0 / Answer:7, Predict:[7] No.1 / Answer:2, Predict:[2] No.2 / Answer:1, Predict:[1] No.3/Answer:0, Predict:[0] No.4 / Answer:4, Predict:[4]

No.5 / Answer:1, Predict:[1] No.6/Answer:4, Predict:[4] No.7/Answer:9, Predict:[9] No.8/Answer:5, Predict:[5] No.9/Answer:9, Predict:[9]

No. 15 / Answer:5, Predict:[5] No. 16 / Answer:9, Predict:[9] No. 17 / Answer:7, Predict:[7] No. 18 / Answer:3, Predict:[3] No.19 / Answer:4, Predict:[4]

What is Machine Learning?

- Set of training samples : $\left[\mathrm{x}_{1}, \ldots . \mathrm{x}_{\mathrm{n}}\right]$ \& $\left[\mathrm{y}_{1}, \ldots . \mathrm{y}_{\mathrm{n}}\right]$
- Learn discriminatively or generativity

- Optimizing the loss function
- Update / change the coefficients such that they minimize the error
- Perform till convergence
- Getting optimal values for ' w ' is called learning
- Now for a new x , you predict it's y

Simple Problem

How to classify a new image into any of the two categories?

Simplified Problem

- Conveyor Belt: 2D Image of Nut \& Bolt
- Supervised Learning Problem
- Train on available data
- Test on new data

Nut

Bolt

Rules

We can classify a new image into any of these two categories by forming a set of rules.

Q: List down few rules by which we can classify

Bolts

1. Longer
2. Thinner
3. Cylindrical in shape
4. More compact

Nuts

1. Circular
2. Has cavity in the centre
3. Less area

- Nut

Data

The graph shows the distribution of data with respect to the below features

Features

1. Circularity

2. Compactness

Now, How can you classify the data?

Classification

It is a simple if with two conditions

```
if Circularity > 55 and
Compactness < 90:
```

```
    Nut
elif Circularity < }55\mathrm{ and
Compactness > 90:
    Bolt
```


Complex Data

The Data becomes more complex to classify using a simple If Classifier

Now, How can you classify the data?

- Nut

Decision Tree

- Non-parametric Supervised Learning
- Approximating data by a set of if-then-else decision rules
- Greedy algorithm
- Whitebox Model :)

Decision Tree

Decision Tree generated for the Nuts and Bolts classification problem

Cons

- May grow huge and hard to manage / visualize
- Problem of overfitting

- Bolt
- Nut

Linear Classifier

A line should classify the data

But, How do I come up with a Line which separates both the classes of data optimally?

Real World features

In Machine Learning terms, we call them as features

Low-level Features

Parts of an ML Algo

Inference

- Hypothesis space, the set of possible hypotheses it can come up with in order to model the unknown target function by formulating the final hypothesis
- An example (linear function) $h(x)=\sum_{i=0}^{n} \theta_{i} x_{i}=\theta^{T} x$,

Learning

X-Training data Y - Labels $\mathrm{h}(\theta)=$ Predicted label

- Cost function $=>\mathrm{J}(\theta)=\mathrm{h}(\theta)-\mathrm{y} \quad$ [Predicted - Actual]
- Update Rule

$$
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta) .
$$

Logistic Regression

The Line can be drawn from the learned parameters

$$
\begin{gathered}
\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}=0 \\
x_{1}=\theta_{0} / \theta_{1}+\theta_{2} x_{2} / \theta_{1}
\end{gathered}
$$

- Bolt
- Nut

Logistic Regression

Learning

X-Training data Y - Labels $\mathrm{h}(\theta)=$ Predicted label

- This can be simplified as $\quad h_{\theta}(x)=g\left(\theta^{T} x\right)=\frac{1}{1+e^{-\theta^{T} x}}$
- Cost function $J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$.
- Update Rule $\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$.

Gradient Descent: Starts with some initial value of θ and repeatedly performs update

Repeat until convergence \{

Gradient Descent

- The magnitude of the update is proportional to the error term (y(i) - h $\theta(x(i)))$
- If a training example on which our prediction nearly matches the actual y (i), there is little need to change the parameters

Stochastic Gradient Descent (SGD)

Batch Gradient
 Descent

$$
\theta_{j}:=\theta_{j}+\alpha \sum_{i=1}^{m}\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)} \quad(\text { for every } j) .
$$

\}

Loop \{

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to } \mathrm{m},\{ \\
& \theta_{j}:=\theta_{j}+\alpha\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)} \quad \text { (for every } j \text {). } \\
& \}
\end{aligned}
$$

\}

Overfitting \& Underfitting

How to Fix

1. Cross Validation
2. Feature selection
3. Regularization

$h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)$
($g=$ sigmoid function)

UNDERFITTING
(high bias)

$g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{1}^{2}\right.$
$+\theta_{3} x_{1}^{2} x_{2}+\theta_{4} x_{1}^{2} x_{2}^{2}$
$+\theta_{5} x_{1}^{2} x_{2}^{3}+\theta_{6} x_{1}^{3} x_{2}+\ldots$

OVERFITTING
(high variance)

Regularization

$$
J(\theta)=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)+\frac{\lambda}{2 m} \sum_{j=1}^{n} \theta_{j}^{2}\right.
$$

Regularization parameter which penalizes higher order θ

More intelligent classifier

Which of the linear separators is optimal?

- Bolt
- Nut

Margins

Let's take the Logistic regression example

Among A, B and C which data point would you confidently classify as Bolt?

If the point is far from the separating hyperplane, we may be significantly more confident in our predictions

Find a decision boundary that allows us to make all CORRECT and CONFIDENT predictions

- Bolt
- Nut

SVM

Optimal Margin Classifier

- Examples closest to the separator are support vectors.
- Margin ρ of the separator is the distance between support vectors $r=\left(W^{\top} X+b\right) /\|W\|$
- Functional Margin
$y^{\wedge}(i)=y(i)\left(w^{\top} x+b\right)$

Nonseparable Data

We learned that SVM is a Linear Classifier

Can SVM classify the given data?

Project data to Higher Dimension

Hyperplane re-projection in 2D

Demo

Just,

- Project the data into higher Dimension
- Find Hyperplane
- Re-project the Hyperplane back to original dimension

Kernel Trick

It is so simple. Is it True?

Higher Dimensional Projection is
Expensive

- Impractical for Large Dimensions
- Huge memory and Computation are required
- Transformation from N dimension to M Dimension is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ expensive

We only need Dot Products..! Not the High Dimension Data

$$
\begin{aligned}
w & =\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)} . \\
w^{T} x+b & =\left(\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x+b \\
& =\sum_{i=1}^{m} \alpha_{i} i y^{(i)}\left\langle x^{(i)}, x\right\rangle+b .
\end{aligned}
$$

$O\left(N^{2}\right)$

$$
K(x, z)=\left(x^{T} z\right)^{2}
$$

$$
K(x, z)=\left(\sum_{\substack{i=1 \\ n \\ n}}^{n} x_{i} z_{i}\right)\left(\sum_{j=1}^{n} x_{i} z_{i}\right)
$$

$=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} z_{i} z_{j}$
$=\sum_{i, j=1}^{n}\left(x_{i} x_{j}\right)\left(z_{i} z_{j}\right)$

$$
K(x, z)=\varphi(x)^{\top} \varphi(z)
$$

$O(N)$

Computationally Faster and No extra memory needed

- Nut

SVM

Find the Hyperplane which optimizes the Geometric margin iteratively

ML Advice - Diagnostics

Try getting more training examples	Fixes high Variance
Try a smaller set of features	Fixes high Variance
Try a larger set of features	Fixes high Bias
Try changing features (e.g, email header features)	Fixes high Bias
Run gradient descent for more iterations	Fixes optimization algorithm
Try Newton's method	Fixes optimization algorithm
Use a different value for λ	Fixes optimization objective
Try using an SVM	Fixes optimization objective

m (training set size)

High Bias

ML Advice

Rule \#1: Plot the Data

Questions to ask:
Is the Algorithm converging?

Are you optimizing the right function?
Is the value for λ is correct?
Is the value for C is correct?

Are initial parameters correct?

Error Analysis

- Helps to understand how much error is attributable to each component?
- Helps to identify Poor components by which we can improve performance
- List down accuracy DROP after introducing each component.
- Plug in ground-truth for each component, and see how accuracy changes

Ablative Analysis

- Helps to understand how each component in the system helps to achieve final better accuracy
- Helps to identify the less contributing component so they can be removed
- List down what is the accuracy IMPROVEMENT after each level starting from the basic model
- Remove one component at a time and see how accuracy drops

Types of ML

Classification

- Logistic Regression
- Decision Tree
- AdaBoost
- Naive Bayes Classification
- SVM (Support Vector Machine)

Types of Learning

Supervised: Learning by Labelled Ex

- Eg. Face Recognition
- Amazingly effective if you have labelled examples

Unsupervised: Discovering Patterns

- Eg. Google News - Data Clustering
- Useful if you lack labelled data

Reinforcement: Feedback right/wrong

- Eg. Playing chess by winning or losing
- Works well in some domains, becoming more important
fiton

Machine learning workflow

Unsupervised Feature extraction Machine learning Grouping of objects

MOOC for ML

cs229 is good place to start

Do a lot of assignments

Work on pet projects

Contribute to ML Open source libraries

Courses

- ML: cs229 by Andrew Y. Ng
- RL: David Silver

Blogs \& Github:

- Scikit-Learn examples
- ML Playground

How to Solve this?

We MAY be able to solve this by introducing one more feature which MAY separate them linearly.

Do you see any pattern?

Cartesian -> Polar

$$
\begin{gathered}
r=v(x 2+y 2) \\
\theta=\tan -1(y / x)
\end{gathered}
$$

Cartesian -> Polar

$$
\begin{aligned}
& r=\sqrt{ }(x 2+y 2) \\
& \theta=\tan -1(y / x)
\end{aligned}
$$

What is Next?

Let the Algorithm Learn these

- Functions
- Features

ON ITS OWN...!

Deep Learning

Session III (DL)

What is the limitation of simple Image Processing and why we need intelligent systems?

Session III Deep Learning

Agenda
$\rightarrow \quad$ What is AI
\rightarrow Human Brain
\rightarrow Limitation of ML
$\rightarrow \quad$ Perceptron / MLP
\rightarrow Backpropagation
\rightarrow Deep learning
$\rightarrow \quad$ CNN
\rightarrow Architectures
\rightarrow Applications

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Human Brain..!

100 Billion Neurons
Each Neuron has 7000 connections

All these are processed under 20
Watts

Few Questions

When you take a video in a mobile motioning your hand, the video has the same effect. But when you are watching, the world does not change. How?

How do you learn? How do you know the action that you performed is right? And repeat the action.

Why do you hear the Sound differently?

Case Study - 1

David lost his sight at 3. With the help of a surgery, he gets his sight back at the age of 35 . But still he is not able to see things properly. Why?

- The occipital, the back part of the brain which is responsible for the Vision was used for other activities
- This part assignment happens when we are child
- If we don't use a particular part, it will be assigned other tasks

Case Study - 2

John met with an accident. When he met his parents, he could not recognize them and treated them like strangers. When he spoke to them over phone, he could recognize and talk to them normally. What happened?

Three parts involved

- Vision recognition
- Auditory
- Emotion

In the accident, the Vision recognition part of the brain lost its memory

But the auditory system still recognizes they are his parents
But for the emotional part of the brain to take decisions, Vision system has more weight and as it sees the conflict, it believes the Vision system

Deep Learning

- Modern reincarnation of Artificial Neural Networks from 1980s and 90s
- Idea: Most of Human Intelligence may be due to one Learning Algorithm
- For all ill-defined problems: Build Learning Algorithms that mimic Brain
- Deep Learning attempts to learn multiple levels of representation of increasing complexity or abstraction
- Higher (deeper) levels of brain (ANN) forms higher levels of abstractions

Limitations of Traditional ML

- Need to hand engineer features which can take a lot of time
- The limitations in its ability to represent complex features (Requires a lot of diligence and intelligence)
- People have spent years to collect data
- Models developed for one problem cannot be easily be utilised for a similar problem

Classification

\rightarrow How do you classify Pencils and Erasers?
\rightarrow Any distinguishing features?

Length
Rigidity

Classification

How to classify these?
\rightarrow Pencils are little flexible

\rightarrow Erasers grew long

5

Classification

How to classify these? :-(

Features

How does a chair look like?

采

What NN Learns?

*Ref - https://www.kdnuggets.com/2016/04/deep-learning-book-finished.html
*Ref - https://www.mizuho-ir.co.jp/publication/column/2013/1119.html
*Ref - http://bale.forosactivos.net/t7p45-con-barba-el-hombre-como-el-oso

Neuron vs Perceptron

Incoming singals from Synapses are summed up at the Soma (A biological inner product)

On crossing a threshold, the neuron "fires" generating an action potential to pass on to the next neuron

Perceptron training

Include bias term as the third weight(w3) with its input always set to 1
Step 1: Initialization: $w_{1}=0, w_{2}=0$, bias $=0$
For each of the training sample do steps 2-4
Step 2: Compute output by weighted linear combination of inputs

$$
(\mathrm{Vi}=\mathrm{w} 1 \text { *x1 + w2 * x2 + } 1 \text { * bias) }
$$

Predicted output $=\mathrm{Vi}>$ Threshold
Step 3: Find the error (Error = Anticipated output - Predicted output)
Step 4: Update each weight based on the following

$$
\begin{aligned}
& \Delta \mathrm{Wi}=\mathrm{Error}{ }^{*} \lambda^{*} \mathrm{Xi} \\
& \mathrm{Wi}=\mathrm{Wi}+\Delta \mathrm{Wi} \\
& \text { Where } \lambda \text { is the learning rate and its range is } 0<=\lambda<1
\end{aligned}
$$

Step 5: Repeat the procedure until no error results

Limitations of Perceptron

- A simple perceptron cannot learn a classifier for a XOR gate
- How to draw a decision boundary in case of a XOR gate?

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Problem - Linear Separability

- Can this kind of perceptron provide solutions to all kinds of data patterns we might encounter in practice? Let's find out
- This is because we don't have non-linear elements in our network. Hence, this kind of network can only learn linear functions of inputs.

- How can we improve the network to learn non-linear functions?
- 1. Include Nonlinearities in the network
- 2. Key observation - Cannot directly classify data. Convert the data to a new feature space to classify

Sigmoid activation fn

We can include non-linear functions in our to improve the representational power of the network.

Can we represent this kind of activation as continuous and smooth function

- The sigmoid function is shown as follows

- Here x is weighted combination of the neuron inputs.
- The neuron fires when $x \gg 0$ and does not fire when $x \ll$

0 . The neuron lies in a transition state when when $x \approx 0$.

- The function is smooth and differentiable

$$
\frac{1}{1+e^{-t}}=\sum_{0}^{\infty}(-1)^{k} e^{-k t}
$$

MLP

Convert the inputs into a new feature space where the data points are linearly separable

This necessitates the need at least two neurons with Non-linearities. This kind of architecture is called Multilayer Perceptron (MLP)

The first layer is called input layer, the layer at the last is called output layer. The layer / layers in between are called Hidden layers

Output layer

Hidden layer

Input layer

Multi Layer Perceptron (MLP)

A simple Multilayer network will consist of:

- Input layer
- Output layer
- One or more hidden layers

It is not necessary that each hidden layer should contain same number of neurons. Each hidden layer usually contains a non-linear activation function

What about training?

- Single layer perceptron - Direct interaction between input and output, hence update weights directly based on output and inputs.
- Training is harder in MLP, since there are multiple layers of weights.
- Measure error committed by network \rightarrow Objective function (Squared
 difference b/w the Anticipated o/p and predicted o/p - MSE)
- Find the minima of the objective function through gradient descent
- But how do we update weights of the network based on direction to move in gradient descent?

Backpropagation

Backpropagation provides a way to compute the gradient of the error function with respect to each of the weights in the network.

This provides a way to update the weights of the network based on the error function.

$\frac{\partial \text { error }}{\partial w 1}=\frac{\partial \text { error }}{\partial o u t p u t} * \frac{\partial \text { output }}{\partial \text { hidden } 2} * \frac{\partial \text { hidden } 2}{\partial \text { hidden } 1} * \frac{\partial \text { hidden } 1}{\partial w 1}$

$$
\begin{gathered}
W:=W-\alpha \frac{\partial J}{\partial W} \\
\text { error }=J=\frac{1}{2}(\vec{p}-\vec{a})^{2} \\
\frac{d}{d \vec{p}} \text { error }=\frac{d}{d \vec{p}} J=2 * \frac{1}{2}(\vec{p}-\vec{a})^{2-1} * 1=(\vec{p}-\vec{a}) \\
\text { Sigmoid }=S(\alpha)=\frac{1}{1+e^{-\alpha}} \\
\frac{d}{d \alpha} S=S(1-S) \\
\frac{\partial J}{\partial W_{i j}^{1}}=\left(p_{j}-\vec{a}\right) * p_{j}\left(1-p_{j}\right) * \frac{\partial p_{i}}{\partial W_{i j}^{1}}
\end{gathered}
$$

Backpropagation

Backpropagation provides a way to compute the gradient of the error function with respect to each of the weights in the network.

This provides a way to update the weights of the network based on the error function.

What does deep learning learn?

- MLPs without bias term model linear transformation
- MLPs with bias term model affine transformation
- The activation functions introduces further non-linearities
- Deep learning learns a transformation of a feature space that becomes linearly separable in a different topological space
- Link - convnetis

Deep Learning

*Ref - http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

MLP - Limitations

- Can this kind of MLP learn any functions?
- Neural network with one hidden layer is a universal approximator
- Then why are many hidden layers required?
- It is practically difficult to learn the exact values of the parameters in such networks. Hence multiple layers make it practically possible to exploit the representational power of a neural network.
- Very expensive training process (Too many parameters to learn)
- Not scalable to a larger architecture. The number of neurons increases rapidly with the number of neurons in the network.
- Does not converge

CNN

- Multi Layered
- Convolution
- Pooling
- Dropout
- Dense (Fully Connected)
- Neurons are arranged in a 3D layer, unlike a MLP, where it is arranged in a 2D layer
- Each neuron views only a specific portion of the input
- Shared weights
- Encodes properties that are more desirable for images.
- Calculates the features from the input by repeated applying convolution operation.

Continuous case

Convolution is a mathematical operation on two functions to produce a third function giving the summation of the pointwise multiplication of the two functions as one of the functions is translated throughout

$$
\begin{aligned}
(f * g)[n] & =\sum_{m=-\infty}^{\infty} f[m] g[n-m] \\
& =\sum_{m=-\infty}^{\infty} f[n-m] g[m] .
\end{aligned}
$$

*Ref - https://en.wikipedia.org/wiki/Convolution
*Ref - http://www.ece.utah.edu/~ece3500/notes/class06.html

1 D vs 2D vs 3D Convolution

3D

0	0	0	0	0	0	\ldots
0	156	155	156	158	158	\ldots
0	153	154	157	159	159	\ldots
0	149	151	155	158	159	\ldots
0	146	146	149	153	158	\ldots
0	145	143	143	148	158	\ldots
\ldots						
Input Channel \#1 (Red)						

-1	-1	1
0	1	-1
0	1	1

Kernel Channel \#1
$\sqrt{\square}$
308

1	0	0
1	-1	-1
1	0	-1

Kernel Channel \#2 $\stackrel{\downarrow}{\square}$

$$
\begin{array}{|c|c|c|}
\hline 0 & 1 & 1 \\
\hline 0 & 1 & 0 \\
\hline 1 & -1 & 1 \\
\hline
\end{array}
$$

Convolution

ZERO PADDING - zeros can be added to the feature map to increase the size of the feature map. The idea is to keep the size of the feature map the same throughout

STRIDES - Number shifts to next
window in the feature map while doing convolution

Zero Padding

Convolution on a feature map with three different strides (Demo)

$D=3$

Answers: $4 \times 4,25 \times 25,69 \times 69$

Quiz..!

Convoluted result size

- Feat $9 x 9$
- Conv 3×3
- Stride 2
- Feat 28×28
- Conv 5×5
- Stride 1
- Padding 1
- Feat 224×224
- Conv 16×16
- Stride 3

Convolution Layer

Neurons:

- Input pixels
- Hidden layer

Weights:

- Kernel weights for the convolution
- Shared among neurons

Features:

- A kernel decides what feature you are learning

Other Layers

Pooling layer - Down samples the size of feature map. Promotes translation invariance

Fully connected - All neurons in a hidden layer is connected with all neurons in the next layer

(a) Standard Neural Net

Dropout - Randomly removes a few layers in the connection. Reduces overfitting

Problem with sigmoid

- Vanishing gradient: It's output saturates at both ends, hence produces "vanishing gradient problem" i.e., the gradient becomes zero at these saturation points and the network cannot learn weights based on backpropagation
- \quad Scales down the gradients to 0.25

$$
\text { - } \quad z^{*}(1-z) \Rightarrow \operatorname{Max}=0.25 \text { at } z=0.5
$$

- It involves expensive operations, hence slows down the training process
$z=1 /(1+n p \cdot \exp (-n p \cdot d o t(W, x)))$ \# forward pass
$\mathrm{dW}=\left(\mathrm{z}^{*}(1-\mathrm{z})\right.$ * x \# backward pass

ReLU (Rectified Linear Unit)

- Sparse activations - A characteristic property of biological neurons
- Does not saturate at extremes, hence allow gradients to propagate through larger networks

CNN: What Changed?

ILSVRC

- ReLU
- Shared Weights
- Specialized Layers: CP
- GPGPU
- Availability of OSS Libraries/Datasets

ImageNet Classification error throughout years and groups

Overfitting

Noise in the data is also fit by the model leading to overfitting

Overfitting increases with number of neurons. But it is not a good practice to decrease the number of neurons! Use Regularisation instead :)

6 hidden neurons

20 hidden neurons

Regularization

Regularisation helps to generalise to the given data while maintaining the representational power of the network

Types of regularisation:-

- L1 regularisation - Prefers sparse distribution
- L2 regularisation - heavily penalizes peaky weight vectors and prefers more diffuse weight vectors.

Cost function = Loss (say, binary cross entropy) + Regularization term

Hyperparameter Strategies

- Hyperparameters: learning rate, batch size, size of convolution, stride etc..
- First do a coarse search with small epochs and then fine search with larger epochs.
- Don't do grid search, prefer random search.

Grid Layout

Important parameter

Cross Entropy based loss

- Cross Entropy formula given two distributions over discrete variable x, where $q(x)$ is the estimate for true distribution $p(x)$ is given by
$H(p, q)=-\sum p(x) \log (q(x))$
- For a neural network,it is denoted by $L=-\mathbf{y} \cdot \log (\hat{\mathbf{y}})$ where y is the ground truth label and $\hat{\mathbf{y}}$ is the predicted label
- Cross entropy loss rewards / penalises only the prediction for the ground truth class. All the other class predictions has no effect.
- Works better in practice than MSE for classification problems

The total cross entropy loss will be
$D=[0 * \log (0.1)+1 * \log (0.5)+0 * \log (0.4)]$

Visualization Techniques

1. Layer activations
a. Visualise the activations of the network. When we use ReLU, the activations starts out relatively blobby but spreads out during learning.
b. Some activations may be all zero indicating high learning rate.
2. Visualise weights
a. Weights are the most interpretable on the first layer, which is looking at the input pixels directly.
b. Weights from other layers can be visualised too. They will usually form some smooth patterns. Noisy patterns indicate that the network has not probably learnt well and needs to trained longer.
3. Retrieving images that maximally excite a neuron.
a. A large dataset of images is taken. The images which fired maximally for some neuron are recorded. Hence this will give us a good insight into what the neuron has learnt.
b. One problem with this is that each Relu neuron might not learn something sematic. It is the combination of several Relu neurons that learn something semantic.

Visualization examples

1. Low dimensional embedding
a. Several visualisation techniques have been proposed which convert the image vectors in high dimensional space to a 2-D space, preserving the pairwise distance between any two points. Eg: tsne! tsne mnist, tsne karpathy.
2. Occluding parts of image (can be used for classification):-
a. We can set a patch of the image to be all zeros. We can iterate position of the patch throughout the image and record the probability of correct class label as a function of position.
b. A 2-dimensional heat map can be produced through such procedure. The probability should reduce considerably at position where the actual object is placed in the image
**Ref- http://cs231n.stanford.edu/

Network Architectures

AlexNet: The game-changer

AlexNet

- Convolution and pooling layers on top of each other.
- It consists of 8 layers -5 convolutional layers and 3 fully connected layers.
- Uses Relu, dropout, max pool, GPU's!

VGG

- Deeper, 19 layers.
- Uses 3*3 Conv filters, over 11*11 and 5*5 as in AlexNet

params	AlexNet	$\begin{aligned} & \text { FLOPs } \\ & 4 \mathrm{M} \end{aligned}$
4M	FC 1000	
16M	FC 4096 / ReLU	16M
37M	FC 4096 / ReLU	37M
	Max Pool 3x3s2	
442K	Conv 3x3s1, $256 / \mathrm{ReLU}$	74M
1.3M	Conv 3x3s1, $384 / \mathrm{ReLU}$	112M
884K	Conv 3x3s1, $384 / \mathrm{ReLU}$	149M
	Max Pool 3x3s2	
	Local Response Norm	
307K	Conv 5x5s1, $256 / \mathrm{ReLU}$	223M
	Max Pool 3x3s2	
	Local Response Norm	
35K	Conv 11x11s4, $96 / \mathrm{ReLU}$	105M

Googlenet

- Inception module - A module where features from multiple layers can be mixed together.
- Inception provides provides a way for combining local and global features.
- GoogleNet trains faster than VGG.
- It contains 22 layers but has less computations and consumes less memory.

Residual Networks(ResNet)

The idea of skip connection suggests that it is easier to learn minor modifications to identity functions

ResNeXt

- Inception
- Residual Blocks
- Network-in-network(1*1 Convolutions)

Figure 1. Left: A block of ResNet [14]. Right: A block of ResNeXt with cardinality $=32$, with roughly the same complexity. A layer is shown as (\# in channels, filter size, \# out channels).

Spatial Transformer Networks (STN)

- Introduces a network to make images invariant to rotations and translations
- It consists of a localisation network that computes the spatial transformation, creation of sampling grid through a grid generator and a sampler which warps the input based on the generated grid.
- An affine transformation followed by bilinear interpolation
- Eliminates the use of Pooling!
- Demo

Recurrent Neural Network(RNN)

- Unlike feedforward neural network, RNN can have loops.
- Useful for Sequential inputs.
- Useful in applications where memory about the past output can play a role in predicting the current output.
- Very useful in text analytics.
- Inefficient for storing long seq, vanishing gradients, not hardware friendly, use hierarchical neural Attention encoder Instead!

GAN(Generative Adversarial Networks)

- Two Networks: Generator and Discriminator
- Both have CNN and DeConv
- The task of the generator is to create natural looking images that are similar to the original data distribution.
- Discriminator tries to tell if the image is generated artificially by Generator Network or a Real Image.
- Generator tries to fool the Discriminator and hence generate real-like images!

SqueezeNet

Fire Module

- $3 x$ Faster, 500 times smaller than Alexnet with same Accuracy!
- How: Uses fire module with deep compression!
- Downsample late to keep a big feature map.

EIE: Efficient Inference Engine on Compressed Deep Neural Network

1. Trained Pruning
2. Trained Quantisation
3. Huffman Coding
4. Efficient Inference Engine(FPGA based Hardware)

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the number of bytes required to store all of the parameters in the trained model.

CNN architecture	Compression Approach	$\begin{aligned} & \text { Data } \\ & \text { Type } \end{aligned}$	$\underset{\substack{\text { Original } \\ \text { Compressed Model } \\ \text { Size }}}{ }$	Reduction in Model Size vs. AlexNet	Top-1 ImageNet Accuracy	Top-5 ImageNet Accuracy
AlexNet	None (baseline)	32 bit	240MB	1 x	57.2\%	80.3\%
AlexNet	SVD (Denton et al., 2014)	32 bit	$240 \mathrm{MB} \rightarrow 48 \mathrm{MB}$	5x	56.0\%	79.4\%
AlexNet	Network Pruning (Han et al., 2015b) et al., 2015b)	32 bit	$240 \mathrm{MB} \rightarrow 27 \mathrm{MB}$	9 x	57.2\%	80.3\%
AlexNet	$\underset{\substack{\text { Deep } \\ \text { Compression (Han } \\ \text { et al., 2015a) }}}{ }$	5-8 bit	$240 \mathrm{MB} \rightarrow 6.9 \mathrm{MB}$	35x	57.2\%	80.3\%
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5\%	80.3\%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8 \mathrm{MB} \rightarrow 0.66 \mathrm{MB}$	363x	57.5\%	80.3\%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8 \mathrm{MB} \rightarrow 0.47 \mathrm{MB}$	510x	57.5\%	80.3\%

Autoencoders

- Stage1(EnCode) : Used to learn a fixed number of features that can best represent the data.
- Stage2(Decode) : Used to reconstruct input from the code(i.e Stage 1 output).
- Can be used for data compression.

Drawbacks:

- Data Specific (A model trained on human faces would not work on modern buildings!)
- Lossy Representation (Like JPEG compression)

DL in Computer vision Applications

Demos:?

Image segmentation
Style Transfer
GAN

Face Fake
RL

DL Advice

- Importance of Clean Data \& Representative Data
- Can you overfit your model (Near Human level accuracy on subset of Training data)?
- Build tools to effectively view large quantity of data
- Balance dataset or find ways to Handle that!
- Subsampling
- Balance accuracy metric, ROC Curve, Precision/Recall
- Balance General Enough vs Over General (Over greedy is bad)
- Human in the loop
- Keep up-to date with tools/libraries

Demos

- GAN
- https://github.com/uclaacmai/Generative-Adversarial-Network-Tutorial/blob/master/Generative \%20Adversarial\%20Networks\%20Tutorial.ipynb
- https://github.com/erschmidt/Jupyter-GAN/blob/master/Labeled-GAN-MNIST.ipynb
- https://github.com/Ujitoko/GAN/blob/master/vanilla GAN/Vanilla GAN keras.ipynb
\circ

References

1. http://cs231n.stanford.edu/
2. http://cs229.stanford.edu/
3. http://colah.github.io/
4. https://github.com/janishar/mit-deep-learning-book-pdf
5. Multiple View Geometry in Computer Vision (Second Edition) : Richard H, Andrew Z
